精英家教網 > 初中數學 > 題目詳情

如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,點E,F在BD上,且BE=DF.
(1)求證:△ABE≌△CDF;
(2)在不添加輔助線的情況下,請你補充一個條件,使得四邊形AECF是菱形,并給予證明.

(1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD.
∴∠ABE=∠CDF.
又∵BE=DF,
∴△ABE≌△CDF.

(2)解:補充的條件是:AC⊥BD.
證明:
∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD.
∵BE=DF,
∴0E=0F.
∴四邊形AECF是平行四邊形.
又∵AC⊥BD,
∴四邊形AECF是菱形.
(其他解法參照給分)
分析:1、由平行四邊形的性質知,AB=CD,AB∥CD,得到∠ABE=∠CDF,又有BE=DF,故由SAS證得△ABE≌△CDF.
2、平行四邊形的性質知,AO=CO,BO=DO,由BE=DF可求得OE=OF,則四邊形AECF是平行四邊形,若使平行四邊形AECF為菱形,只要AC⊥EF即可.
點評:本題利用了平行四邊形的判定和性質,全等三角形和菱形的判定求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發,以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網的延長線交于點P,FP交AD于點Q.設運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數關系式,并寫出自變量x的取值范圍;
(2)當x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
OB=
5
,則下列結論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•同安區一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视