【題目】如圖,P是正三角形ABC內的一點,且PA=5,PB=12,PC=13,若將△PAC繞點A逆時針旋轉后,得到△P′AB,求點P與點P′之間的距離及∠APB的度數.
【答案】點P與點P′之間的距離為5,∠APB的度數為150°.
【解析】
試題分析:先根據等邊三角形的性質得AB=AC,∠BAC=60°,再利用旋轉的性質得∠P′AP=∠BAC=60°,AP′=AP,BP′=CP=13,于是可判斷△AP′P為等邊三角形,得到PP′=AP=5,∠APP′=60°,接著根據勾股定理的逆定理證明△BPP′為直角三角形,且∠BPP′=90°,然后利用∠APB=∠APP′+∠BPP′求出∠APB的度數.
試題解析:∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,
∵△PAC繞點A逆時針旋轉后,得到△P′AB,
∴∠P′AP=∠BAC=60°,AP′=AP,BP′=CP=13,
∴△AP′P為等邊三角形,
∴PP′=AP=5,∠APP′=60°,
在△BPP′中,∵PP′=5,BP=12,BP′=13,
∴PP′2+BP2=BP′2,
∴△BPP′為直角三角形,∠BPP′=90°,
∴∠APB=∠APP′+∠BPP′=60°+90°=150°.
答:點P與點P′之間的距離為5,∠APB的度數為150°.
科目:初中數學 來源: 題型:
【題目】在一個不透明的布袋里裝有4個標號為1、2、-3、-4.的小球,它們的材質、形狀、大小完全相同,小凱從布袋里隨機取出一個小球,記下數字為x,小敏從剩下的3個小球中隨機取出一個小球,記下數字為y,這樣確定了點P的坐標(x,y).
(1)小凱從布袋里隨機取出一個小球,記下數字為x,求x為負數的概率;
(2)請你運用畫樹狀圖或列表的方法,寫出點P所有可能的坐標;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】方程-x2+3x=1用公式法求解,先確定a , b , c的值,正確的是( 。
A.a=-1,b=3,c=-1
B.a=-1,b=3,c=1
C.a=-1,b=-3,c=-1
D.a=1,b=-3,c=-1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電視臺“走基層”欄目的一位記者赴360km外的農村采訪,全程的前一部分為高速公路,后一部分為鄉村公路.如果汽車在高速公路和鄉村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關系如圖所示,那么汽車在鄉村公路上的行駛速度為km/h.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把幾個圖形拼成一個新的圖形,再通過兩種不同的方法計算同一個圖形的面積,可以得到一個等式,也可以求出一些不規則圖形的面積. 例如,由1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)如圖2,將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的形式表示這個大正方形的面積,你能發現什么結論?請用等式表示出來.
(2)利用(1)中所得到的結論,解決下面的問題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.
(3)如圖3,將兩個邊長分別為a和b的正方形拼在一起,B,C,G三點在同一直線上,連接BD和BF.若這兩個正方形的邊長滿足a+b=10,ab=20,請求出陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】據報道,2017年11月11日淘寶網一天的銷售額為1682億元,這個數據用科學記數法表示為( )
A. 1682×108 B. 16.82×1010 C. 1.682×1010 D. 1.682×1011
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖△ADF和△BCE中,∠A=∠B,點D、E、F、C在同﹣直線上,有如下三個關系式:①AD=BC;②DE=CF;③BE∥AF。
(1)請用其中兩個關系式作為條件,另一個作為結論,寫出所有你認為正確的命題.(用序號寫出命題書寫形式,如:如果①、②,那么③)
(2)選擇(1)中你寫出的一個命題,說明它正確的理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com