【題目】如圖,中,
,
,
,
是線段
上一個動點,以
為邊在
外作等邊
.若
是
的中點,則
的最小值為( )
A.6B.8C.9D.10
【答案】C
【解析】
過點D作DG⊥BC于G,過點F作FH⊥BC于H,設等邊△BDE的邊長為x,解直角三角形BG,DG,再求出∠CBE=90°,然后根據梯形的中位線等于兩底和的一半求出FH,再求出CH,然后利用勾股定理列式表示出CF2,再根據二次函數的增減性求出CF2的最小值,然后開方即可.
解:如圖,過點D作DG⊥BC于G,過點F作FH⊥BC于H,
設等邊△BDE的邊長為x,
∵∠ABC=30°,
∴BG=x,DG=
x,
∵∠ABC=30°,△BDE是等邊三角形,
∴∠CBE=90°,
∵F為DE中點,
∴FH是梯形BEDG的中位線,
在中
為線段AB上一個動點
當時
有最小值81
:CF的最小值為,
故選擇:C
科目:初中數學 來源: 題型:
【題目】如圖所示的正方形網格中,△的頂點均在格點上,請在所給直角坐標系中按要求畫圖和解答下列問題:
(1)作出△關于y軸對稱的△ A1B1C1,并寫出點C1的坐標.
(2)以點為旋轉中心,將△
繞點
順時針旋轉
得△ A2B2C2,畫出△ A2B2C2 ,并寫出點C2的坐標.
(3)畫出△關于坐標原點
成中心對稱的△ A3B3C3,并寫出點C3的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的圖像與x軸交于點(-2,0)、(
),且
,與y軸的正半軸的交點在(0,2)的下方,則下列結論中:①ab>0;②4a-2b+c=0;③2a-b+1<0;④a<b<c,其中正確的結論有( ).
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 已知拋物線的對稱軸是直線x=3,且與x軸相交于A,B兩點(B點在A點右側)與y軸交于C點 .
(1)求拋物線的解析式和A、B兩點的坐標;
(2)若點P是拋物線上B、C兩點之間的一個動點(不與B、C重合),則是否存在一點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;
(3)若M是拋物線上任意一點,過點M作y軸的平行線,交直線BC于點N,當MN=3時,求M點的坐標 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“分塊計數法”:對有規律的圖形進行計數時,有些題可以采用“分塊計數”的方法.
例如:圖1有6個點,圖2有12個點,圖3有18個點,……,按此規律,求圖10、圖n有多少個點?
我們將每個圖形分成完全相同的6塊,每塊黑點的個數相同(如圖),這樣圖1中黑點個數是6×1=6個;圖2中黑點個數是6×2=12個:圖3中黑點個數是6×3=18個;所以容易求出圖10、圖n中黑點的個數分別是 、 .
請你參考以上“分塊計數法”,先將下面的點陣進行分塊(畫在答題卡上),再完成以下問題:
(1)第5個點陣中有 個圓圈;第n個點陣中有 個圓圈.
(2)小圓圈的個數會等于271嗎?如果會,請求出是第幾個點陣.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線過點
軸上的
和
點,交
軸于點
,點
該物上限一點,且
.
(1)拋物線的解析式為:____________;
(2)如圖2,過點作
軸交直線
于點
,求點
在運動的過程中線段
長度的最大值;
(3)如圖3,若,在對稱軸左側的拋物線上是否存在點
,使
?若存在,請求出點
的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某生產商存有1200千克產品,生產成本為150元/千克,售價為400元千克.因市場變化,準備低價一次性處理掉部分存貨,所得貨款全部用來生產
產品,
產品售價為200元/千克.經市場調研發現,
產品存貨的處理價格
(元/千克)與處理數量
(千克)滿足一次函數關系(
),且得到表中數據.
|
|
200 | 350 |
400 | 300 |
(1)請求出處理價格(元千克)與處理數量
(千克)之間的函數關系;
(2)若產品生產成本為100元千克,
產品處理數量為多少千克時,生產
產品數量最多,最多是多少?
(3)由于改進技術,產品的生產成本降低到了
元/千克,設全部產品全部售出,所得總利潤為
(元),若
時,滿足
隨
的增大而減小,求
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的布袋里裝有16個只有顏色不同的球,其中紅球有x個,白球有2x個,其他均為黃球,現甲從布袋中隨機摸出一個球,若是紅球則甲同學獲勝,甲同學把摸出的球放回并攪勻,由乙同學隨機摸出一個球,若為黃球,則乙同學獲勝。
(1)當X=3時,誰獲勝的可能性大?
(2)當x為何值時,游戲對雙方是公平的?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數量關系,并說明理由:
(3)拓展與運用:
正方形CEGF在旋轉過程中,當B,E,F三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com