【題目】已知圓O1、圓O2的半徑不相等,圓O1的半徑長為3,若圓O2上的點A滿足AO1=3,則圓O1與圓O2的位置關系是( )
A.相交或相切
B.相切或相離
C.相交或內含
D.相切或內含
科目:初中數學 來源: 題型:
【題目】已知如圖,在平面直角坐標系中,點 B(m,0)、A(n,0)分別是 x 軸軸上兩點, 且滿足多項式(x2+mx+8)(x2-3x+n)的積中不含 x3項和 x2項,點 P(0,h)是 y 軸正半軸上的動點
(1)求三角形△ABP 的面積(用含 h 的代數式表示)
(2)過點 P 作 DP⊥PB,CP⊥PA,且 PD=PB,PC=AP
① 連接 AD、BC 相交于點 E,再連 PE,求∠BEP 的度數
② 連 CD 與 y 軸相交于點 Q,當動點 P 在 y 軸正半軸上運動時,線段 PQ 的長度變不變?如果不變,請求出其值;如果變化,請求出其變化范圍
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y= x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為( )
A.(﹣3,0)
B.(﹣6,0)
C.(﹣ ,0)
D.(﹣ ,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過程,請填空.
解:∵OA⊥OB(已知)
所以_____=90°(________)
因為_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代換)
所以______=90°
所以OC⊥OD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面語句:
① 一個數的k 次方(k是整數)的立方根是正數.
②如果一個數的立方根等于它本身,那么這個數或者是1,或者是0.
③如果a≠0,那么a的立方根的符號與a的符號相同.
④一個正數的算術平方根以及它的立方根都小于原來的數.
⑤兩個互為相反數的數開立方所得的結果仍然互為相反數.
在上面語句中,正確的有( )
A. 1句 B. 2句 C. 3句 D. 4句
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,點D在BC上,點E在AB上,BD=BE,要使△ADB≌△CEB,還需添加一個條件.
(1)給出下列四個條件:①AD=CE ②AE=CD ③∠BAC=∠BCA ④∠ADB=∠CEB請你從中選出一個能使△ADB≌△CEB的條件,并給出證明;
你選出的條件是
證明:
(2)在(1)中所給出的條件中,能使△ADB≌△CEB的還有哪些?直接在題后橫線上寫出滿足題意的條件序號:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】光明中學八年級甲、乙、丙三個班中,每班的學生人數都為40名,某次數學考試的成績統計如圖:(每組分數含最小值,不含最大值)
丙班數學成績頻數統計表
分數 | 50~60 | 60~70 | 70~80 | 80~90 | 90~100 |
人數 | 1 | 4 | 15 | 11 | 9 |
根據上圖及統計表提供的信息,則80~90分這一組人數最多的班是________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形網格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應點.
(1)請畫出平移后的△A′B′C′,并求△A′B′C′的面積;
(2)若連接AA′,CC′,則這兩條線段之間的關系是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com