【題目】如圖,已知:拋物線交x軸于A,C兩點,交y軸于點B,且OB=2CO.
(1)求二次函數解析式;
(2)在二次函數圖象位于x軸上方部分有兩個動點M、N,且點N在點M的左側,過M、N作x軸的垂線交x軸于點G、H兩點,當四邊形MNHG為矩形時,求該矩形周長的最大值;
(3) 拋物線對稱軸上是否存在點P,使得△ABP為直角三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
【答案】(1)y;(2)
;(3)(1,-3)或(1,
)或(1,1+
)或(1,1-
)
【解析】
(1)利用待定系數法求出A、B、C的坐標,然后把B點坐標代入,求出a 的值,并化簡二次函數式即可;
(2)設點M的坐標為(m,),則點N的坐標為(2-m
),可得
, GM=
,利用矩形MNHG的周長=2MN+2GM,化簡可得
,即當
時,C有最大值,最大值為
,
(3)分三種情況討論:①點P在AB的下方,②點P在AB的上方,③以AB為直徑作圓與對稱軸交,分別討論得出結果即可.
(1)對于拋物線y=a(x+1)(x-3),
令y=0,得到a(x+1)(x-3)=0,
解得x=-1或3,
∴C(-1,0),A(3,0),
∴OC=1,
∵OB=2OC=2,
∴B(0,2),
把B(0,2)代入y=a(x+1)(x-3)中得:2=-3a,a=-
∴二次函數解析式為
(2)設點M的坐標為(m,),
則點N的坐標為(2-m,),
, GM=
矩形MNHG的周長 C=2MN+2GM
=2(2m-2)+2()
=
=
∴當時,C有最大值,最大值為
,
(3)∵A(3,0),B(0,2),
∴OA=3,OB=2,
由對稱得:拋物線的對稱軸是:x=1,
∴AE=3-1=2,
設拋物線的對稱軸與x軸相交于點E,當△ABP為直角三角形時,存在以下三種情況:
①如圖1,
當∠BAP=90°時,點P在AB的下方,
∵∠PAE+∠BAO=∠BAO+∠ABO=90°,
∴∠PAE=∠ABO,
∵∠AOB=∠AEP,
∴△ABO∽△PAE,
∴ ,即
,
∴PE=3,
∴P(1,-3);
②如圖2,
當∠PBA=90°時,點P在AB的上方,過P作PF⊥y軸于F,
同理得:△PFB∽△BOA,
∴,即
,
∴
∴,
∴P(1,);
③如圖3,
以AB為直徑作圓與對稱軸交于P1、P2,則∠AP1B=∠AP2B=90°,
設P1(1,y),
∵AB2=22+32=13,
由勾股定理得:AB2=P1B2+P1A2,
∴,
解得:,
∴P(1,1+)或(1,1-
)
綜上所述,點P的坐標為(1,-3)或(1,)或(1,1+
)或(1,1-
)
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,直徑AB與弦CD相交于點P,∠CAB=62°,∠APD=86°.
(1)求∠B的大小;
(2)已知AD=6,求圓心O到BD的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,AB=CB,AC=10,S△ABC=60,E為AB上一動點,連結CE,過A作AF⊥CE于F,連結BF,則BF的最小值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的的網格中,給出了以格點(網格線的交點)為端點的線段AB.
(1)將線段AB向上平移5個單位長度,得到線段,畫出線段
;連接
、
,并直接判斷四邊形
的形狀;
(2)以點B為旋轉中心,將線段AB順時針旋轉得到線段BC,畫出線段BC,并直接寫出
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的頂點A,D在直線l上,∠BAD=60°,以點A為旋轉中心將菱形ABCD順時針旋轉α(0°<α<30°),得到菱形AB′C′D′,B′C′交對角線AC于點M,C′D′交直線l于點N,連接MN,當MN∥B′D′ 時,解答下列問題:
(1)求證:△AB′M≌△AD′N;
(2)求α的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風情線是蘭州最美的景觀之一.數學課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離(結果精確到1米,參考數據:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某禮品店生產的禮品盒分為六個檔次,第一檔(最低檔次)的產品每天生產76件,每件利潤10元,調查表明:生產提高一個檔次的禮品盒,每件利潤增加2元.
(1)若生產的某批禮品盒每件利潤為14元,問生產的是第幾檔次的產品?
(2)由于生產工序不同,禮品盒每提升一個檔次,一天會少生產4件,若生產的某檔次產品一天的利潤為1080元,問生產的是第幾檔次的產品?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次夏令營活動中,小亮從位于A點的營地出發,沿北偏東60°方向走了5km到達B地,然后再沿北偏西30°方向走了若干千米到達C地,測得A地在C地南偏西30°方向,則A、C兩地的距離為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本小題滿分10分)如圖,一次函數的圖象與反比例函數
(
為常數,且
)的圖象交于A(1,a)、B兩點.
(1)求反比例函數的表達式及點B的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com