【題目】△ABC 是等邊三角形,點 P 在△ABC 內,PA=2,將△PAB 繞點 A 逆時針旋轉得到△P1AC,則 P1P 的長等于( )
A. 2 B. C.
D. 1
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線W:y=ax2﹣2的頂點為點A,與x軸的負半軸交于點D,直線AB交拋物線W于另一點C,點B的坐標為(1,0).
(1)求直線AB的解析式;
(2)過點C作CE⊥x軸,交x軸于點E,若AC平分∠DCE,求拋物線W的解析式;
(3)若a=,將拋物線W向下平移m(m>0)個單位得到拋物線W1,如圖2,記拋物線W1的頂點為A1,與x軸負半軸的交點為D1,與射線BC的交點為C1.問:在平移的過程中,tan∠D1C1B是否恒為定值?若是,請求出tan∠D1C1B的值;若不是,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B點,與y軸交于點C(0,﹣3).
(1)求該拋物線的解析式;
(2)觀察圖象,直接寫出不等式x2+bx+c>0的解集;
(3)設(1)中的拋物線上有一個動點P,點P在該拋物線上滑動且滿足S△PAB=8,請求出此時P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程ax2+bx+1=0中,b=;
(1)若a=4,求b的值;
(2)若方程ax2+bx+1=0有兩個相等的實數根,求方程的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小華為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達坡頂D處.已知斜坡的坡角為15°.小華的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(計算結果精確到1m)(參考數據:sin15°=,cos15°=
,tan15°=
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,臺風中心位于點,并沿東北方向
移動,已知臺風移動的速度為40千米/時,受影響區域的半徑為260千米,
市位于點
的北偏東75°方向上,距離
點480千米.
(1)說明本次臺風是否會影響市;
(2)若這次臺風會影響市,求
市受臺風影響的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某品牌的洗衣機在市場上享有美譽,市場標價為元,進價為
元,市場調研發現,若在市場價格的基礎上降價會引起銷售量的增加,當銷售價格為
元時,月銷售量為
臺;當銷售價格為
元時,月銷售量為
臺.若月銷售量
(臺)與銷售價格
(元)滿足一次函數關系.
(1)求與
之間的函數關系式;
(2)公司決定采取降價促銷,迅速占領市場的方案,請根據以上信息,判斷當銷售價格定為多少元時,公司的月利潤
最大,并求出
的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明大學畢業回家鄉創業,第一期培植盆景與花卉各50盆售后統計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是19元,調研發現:
①盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元;②花卉的平均每盆利潤始終不變.
小明計劃第二期培植盆景與花卉共100盆,設培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤分別為W1,W2(單位:元)
(1)用含x的代數式分別表示W1,W2;
(2)當x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com