分析:先將b2+4b+4化為完全平方式,再根據非負數的性質列出關于a、b的方程,再代入代數式求值.
解答:解:∵原式可化為
+(b+2)2=0,
∴a
2-2a-1=0,b+2=0,
解得,a
1=1+
,a
2=1-
,
∴b=-2,
(1)①2a
2-4a+5b
=2×(1+
)
2-4×(1+
)+5×(-2)
=2×(1+2+2
)-4-4
-10
=-8;
其立方根為-2;
②2a
2-4a+5b
=2×(1-
)
2-4×(1-
)+5×(-2)
=2×(1+2-2
)-4+4
-10
=-8;
其立方根為-2;
(2)①a
2+a
-2+b
2
=(1+
)
2+
+(-2)
2
=14.
②a
2+a
-2+b
2
=(1-
)
2+
+(-2)
2
=14.
點評:本題考查了非負數的性質和代數式求值:要知道幾個非負數的和為0時,這幾個非負數都為0,還要熟悉二次根式的運算.