【題目】如圖:在平行四邊形ABCD中,點E在BA的延長線上,且BE=AD,點F在AD上,AF=AB,求證:CF=EF.
【答案】證明:∵四邊形ABCD是平行四邊形,
∴CD∥AB,CD=AB,
∴∠D=∠EAF,
∵BE=AD,AF=AB,
∴AE=DF,CD=AF,
在△CDF和△FAE中, ,
∴△DCF≌△AFE(SAS),
∴CF=EF.
【解析】由四邊形ABCD是平行四邊形,可得CD∥AB,CD=AB,即可證得∠D=∠EAF,又由BE=AD,AF=AB,易得AE=DF,CD=AF,然后由SAS證得△DCF≌△AFE,即可證得結論.
【考點精析】本題主要考查了平行四邊形的性質的相關知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AB=6,點P是AB邊上的任意一點(點P不與點A、點B重合),過點P作PD⊥AB,交直線BC于點D,作PE⊥AC,垂足為點F.
(1)求∠APE的度數;
(2)連接DE,當△PDE為等邊三角形時,求BP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市最高氣溫是33℃,最低氣溫是24℃,則該市氣溫t(℃)的變化范圍是()
A. t>33 B. t≤24 C. 24<t<33 D. 24≤t≤33
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,有矩形AOBC,點A、B的坐標分別為(0,4)、(10,0),點P的坐標為(2,0),點M在線段AO上,點N在線段AC上,總有∠MPN=90 ,點M從點O運動到點A,當點M運動到A點時,點N與點C重合(如圖2)。令AM=x
(1).直接寫出點C的坐標___________;
(2)、①設MN2=y,請寫出y關于x的函數關系式,并求出y的最小值;
②連接AP交MN于點D,若MN⊥A P,求x的值;
(3)、當點M在邊AO上運動時,∠PMN的大小是否發生變化?請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,一次函數y=ax+b(a≠0)的圖形與反比例函數y= (k≠0)的圖象交于第二、四象限內的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=
,點B的坐標為(m,﹣2).
(1)求△AHO的周長;
(2)求該反比例函數和一次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列調查中,哪些適合抽樣調查?哪些適合全面調查?
(1)工廠準備對一批即將出廠的飲料中含有細菌總數的情況進行調查;
(2)小明準備對全班同學所喜愛的球類運動的情況進行調查;
(3)某農田保護區對區內的水稻秧苗的高度進行調查.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com