【題目】在和
中,
,
,
,點
,
,
分別是
,
,
的中點,連接
,
.
(1)如圖①,,點
在
上,則
;
(2)如圖②,,點
不在
上,判斷
的度數,并證明你的結論;
(3)連接,若
,
,固定
,將
繞點
旋轉,當
的長最大時,
的長為 (用含
的式子表示).
【答案】(1);(2)
,證明見解析;(3)
【解析】
(1)由AB=AC、AD=AE,得BD=CE,再根據G、P、F分別是BC、CD、DE的中點,可得出PG∥BD,PF∥CE.則∠GPF=180°—=90°;
(2)連接BD,連接CE,由已知可證明△ABD≌△ACE,則∠ABD=∠ACE.因為G、P、F分別是BC、CD、DE的中點,則PG∥BD,PF∥CE.進而得出∠GPF=180°—=120°;
(3)當D在BA的延長線上時,CE=BD最長,此時BD=AB+AD=5+2=7,再由三角形中位線定理即可算出PG=3.5,在Rt△GPH中,由三角函數的定義即可求出GH,進一步求出FG.
解:(1)∵AB=AC、AD=AE,
∴BD=CE,
∵G、P、F分別是BC、CD、DE的中點,
∴PG∥BD,PF∥CE.
∴∠ADC=∠DPG,∠DPF=∠ACD,
∴∠GPF=∠DPF+∠DPG=∠ADC+∠ACD=180°-∠BAC==90°,
即∠GPF=90°;
(2)∠FPG=120°,證明如下:
如圖,連接BD,連接CE.如圖②,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
∵G、P、F分別是BC、CD、DE的中點,
∴PG∥BD,PF∥CE,
∴∠PGC=∠CBD,
∠DPF=∠DCE=∠DCA+∠ACE=∠DCA+∠ABD,
∠DPG=∠PGC+∠BCD=∠CBD+∠BCD,
∴∠GPF=∠DPF+∠DPG=∠DCA+∠ABD+∠CBD+∠BCD=180°—∠BAC=180°—=120°,
即∠GPF=120°;
(3)如圖,連結BD,CE,過P作PH⊥FG于H,
由(2)可知,△ABD≌△ACE,
∴BD=CE,且,
當D在BA的延長線上時,CE最長,即BD最長,此時BD=AB+AD=5+2=7,
∴PG=3.5,
∵PF=PG,PH⊥FG,
∴,
FG=2HG,
∴,
故答案為:.
科目:初中數學 來源: 題型:
【題目】某玩具由一個圓形區域和一個扇形區域組成,如圖,在⊙O1和扇形O2CD中,⊙O1與O2C、O2D分別切于點A、B,已知∠CO2D=60°,E、F是直線O1O2與⊙O1、扇形O2CD的兩個交點,且EF=24cm,設⊙O1的半徑為xcm,
(1)用含x的代數式表示扇形O2CD的半徑;
(2)若⊙O1和扇形O2CD兩個區域的制作成本分別為0.45元/cm2和0.06元/cm2,當⊙O1的半徑為多少時,該玩具的制作成本最。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是小章為學校舉辦的數學文化節沒計的標志,在△ABC中,∠ACB=90°,以△ABC的各邊為邊作三個正方形,點G落在HI上,若AC+BC=6,空自部分面積為10.5,則陰影部分面積為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某校八年級體育科目訓練情況,從八年級學生中隨機抽取了部分學生進行了一次體育科目測試(把測試結果分為四個等級:A級:優秀;B級:良好;C級:及格;D級:不及格),并將測試結果繪成了如下兩幅不完整的統計圖請根據統計圖中的信息解答下列問題:
(1)圖1中的度數是__________,并把圖2條形統計圖補充完整.
(2)抽取的這部分的學生的體育科目測試結果的中位數是在__________級;
(3)依次將優秀、良好、及格、不及格記為90分、80分、70分、50分,請計算抽取的這部分學生體育的平均成績.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l1:y=k1x+b過A(0,﹣3),B(5,2),直線l2:y=k2x+2.
(1)求直線l1的表達式;
(2)當x≥4時,不等式k1x+b>k2x+2恒成立,請寫出一個滿足題意的k2的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了調查學生預防“新型冠狀病毒”知識的情況,在全校隨機抽取了一部分學生進行民意調查,調查結果分為A.B.C三個等級,其中A:非常了解,B:了解,C:不了解,并根據調查結果繪制了如下兩個不完整的統計圖,請根據統計圖,解答下列問題:
(1)這次抽查的學生為 人;
(2)求等級A在扇形統計圖中所占圓心角的度數;
(3)若該校有學生2200人,請根據抽樣調查的結果,估計該校約有多少學生對預防新型冠狀病毒知識已經了解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市組織全民健身活動,有100名男選手參加由跑、跳、投等10個田徑項目組成的“十項全能”比賽.其中25名選手的一百米跑成績排名,跳遠成績排名與10項總成績的排名情況如圖所示,
甲、乙、丙表示三名男選手,下面有3個推斷:
①甲的一百米跑成績排名比10項總成績排名靠前;②乙的一百米跑成績排名比10項總成績排名靠后;③丙的一百米跑成績排名比跳遠成績排名靠前.
其中合理的是( )
A.③B.①C.①③D.①②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市某特產專賣店銷售一種蜜棗,每千克的進價為10元,銷售過程中發現,每天銷量與銷售單價x(元)之間關系可以近似地看作一次函數
.(利潤=售價-進價)
(1)寫出每天的利潤w(元)與銷售單價x(元)之間函數解析式;
(2)當銷售單價定為多少元時,這種蜜棗每天能夠獲得最大利潤?最大利潤是多少元?
(3)物價部門規定,這種蜜棗的銷售單價不得高于30元.若商店想要這種蜜棗每天獲得300元的利潤,則銷售單價應定為多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com