【題目】如圖,一次函數y1=kx+1與二次函數y2=ax2+bx﹣2交于A,B兩點,且A(1,0)拋物線的對稱軸是x=﹣ .
(1)求k和a、b的值;
(2)求不等式kx+1>ax2+bx﹣2的解集.
科目:初中數學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,正比例函數y=x的圖象與反比例函數y=(k≠0)的圖象交于點A(﹣2,﹣2),其中將直線OA向上平移3個單位后與y軸交于點C,與反比例函數在第三象限內交點為B(﹣4,m).
(1)求該反比例函數的解析式與平移后的直線解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,運載火箭從地面L處垂直向上發射,當火箭到達A點時,從位于地面R處的雷達測得AR的距離是40km,仰角是30°,n秒后,火箭到達B點,此時仰角是45°,則火箭在這n秒中上升的高度是_____km.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2+bx+c的圖象經過點(4,3),(3,0).
(1)求b、c的值;
(2)求出該二次函數圖象的頂點坐標和對稱軸,并在所給坐標系中畫出該函數的圖象;
(3)該函數的圖象經過怎樣的平移得到y=x2的圖象?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y1=ax(x﹣2)與x軸交于O、A兩點,頂點為M,對稱軸BM交拋物線于點B,交x軸于點C,連接OB、AB、OM、AM,已知0<a<4,四邊形OMAB的面積為S.
特例探究:填表:
歸納證明:
當a=2時,證明四邊形OMAB是菱形;
拓展應用
(1)將拋物線y1=ax(x﹣2)改為拋物線y3=ax(x﹣2m)(m>0),其他條件不變,當四邊形OMAB為正方形時,a= ,m= .
(2)將拋物線y1=ax(x﹣2)改為拋物線y3=ax(x﹣2m)(m>0),其他條件不變,S= (用含m的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017遼寧省盤錦市,第18題,3分)如圖,點A1(1,1)在直線y=x上,過點A1分別作y軸、x軸的平行線交直線于點B1,B2,過點B2作y軸的平行線交直線y=x于點A2,過點A2作x軸的平行線交直線
于點B3,…,按照此規律進行下去,則點An的橫坐標為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點.
(1)若∠BAC=60°,∠C=70°,求∠AFB的大;
(2)若D是BC的中點,∠ABE=30°,求證:△ABC是等邊三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線(其中
為常數,
),
取不同數值時,可得不同直線,請研究這些直線的共同特征.
實踐操作
(1)當時,直線
的解析式為________,請在圖1中畫出圖象.
當時,直線
的解析式為________,請在圖2中畫出圖象
(2)探索發現:
直線必經過點(_______,_______).
(3)類比遷移:
矩形如圖2所示,若直線
分矩形
的面積為相等的兩部分,請在圖中直接畫出這條直線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com