已知y=y1-y2,其中y1是x的反比例函數,y2是x2的正比例函數,且x=1時y=3,x=-2時y=-15.
求:(1)y與x之間的函數關系式;
(2)當x=2時y的值.
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,點O為坐標原點,正方形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(2,2),反比例函數(x>0,k≠0)的圖像經過線段BC的中點D.
⑴求k的值;
⑵若點P(x,y)在該反比例函數的圖像上運動(不與點D重合),過點P作PR⊥y軸于點R,作PQ⊥BC所在直線于點Q,記四邊形CQPR的面積為S,求S關于x的解析式并寫出x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,直線y=x+1與y軸交于A點,與反比列函數y=(x>0)的圖象交于點M,過M作MH⊥x,且tan∠AHO=
.
(1)求k的值;
(2)設點N(1,a)是反比例函數y=(x>0)圖像上的點,在y軸上是否存在點P,使得PM+PN最小,若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
我們規定:形如 的函數叫做“奇特函數”.當
時,“奇特函數”
就是反比例函數
.
(1) 若矩形的兩邊長分別是2和3,當這兩邊長分別增加x和y后,得到的新矩形的面積為8 ,求y與x之間的函數關系式,并判斷這個函數是否為“奇特函數”;
(2) 如圖,在平面直角坐標系中,點O為原點,矩形OABC的頂點A,C的坐標分別為(9,0)、(0,3).點D是OA的中點,連結OB,CD交于點E,“奇特函數”的圖象經過B,E兩點.
① 求這個“奇特函數”的解析式;
② 把反比例函數的圖象向右平移6個單位,再向上平移 個單位就可得到①中所得“奇特函數”的圖象.過線段BE中點M的一條直線l與這個“奇特函數”的圖象交于P,Q兩點,若以B、E、P、Q為頂點組成的四邊形面積為
,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
平行四邊形ABCD在平面直角坐標系中的位置如圖所示,其中A(-4,0),B(2,0),C(3,3),反比例函數y=的圖象經過點C.
(1)求此反比例函數的解析式;
(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形AD′C′B,請你通過計算說明點D′在雙曲線上;
(3)請你畫出△AD′C,并求出它的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖所示是某一蓄水池的排水速度h)與排完水池中的水所用的時間t(h)之間的函數關系圖象.
(1)請你根據圖象提供的信息求出此蓄水池的蓄水量;
(2)寫出此函數的解析式;
(3)若要6 h排完水池中的水,那么每小時的排水量應該是多少?
(4)如果每小時排水量是,那么水池中的水要用多少小時排完?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系的第一象限中,有一各邊所在直線均平行于坐標軸的矩形ABCD,且點A在反比例函數L1:y= (x>0) 的圖象上,點C在反比例函數L2:y=
(x>0) 的圖象上(矩形ABCD夾在L1與L2之間).(1)若點A坐標為(1,1)時,則L1的解析式為 .(2)在(1)的條件下,若矩形ABCD是邊長為1的正方形,求L2的解析式.(3)若k1=1,k2=6,且矩形ABCD的相鄰兩邊分別為1和2,求符合條件的頂點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系中直線y=x﹣2與y軸相交于點A,與反比例函數在第一象限內的圖象相交于點B(m,2).
(1)求反比例函數的關系式;
(2)將直線y=x﹣2向上平移后與反比例函數圖象在第一象限內交于點C,且△ABC的面積為18,求平移后的直線的函數關系式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com