精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,AB=AC,BD平分∠ABCAC于點D,AE∥BDCB的延長線于點E.若∠E=35°,則∠BAC的度數為(  )

A. 40° B. 45° C. 60° D. 70°

【答案】A

【解析】根據平行線的性質可得∠CBD的度數,根據角平分線的性質可得∠CBA的度數,根據等腰三角形的性質可得∠C的度數,根據三角形內角和定理可得∠BAC的度數.

解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,

∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.

故選A.

“點睛”考查了平行線的性質,角平分線的性質,等腰三角形的性質和三角形內角和定理.關鍵是得到∠C=∠CBA=70°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.

(1)△ABC的面積為______;

(2)將△ABC經過平移后得到△A′B′C′,圖中標出了點B的對應點B′,補全△A′B′C′;

(3)若連接AA′,BB′,則這兩條線段之間的關系是______;

(4)在圖中畫出△ABC的高CD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,EABCD的邊CD的中點,延長AEBC的延長線于點F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線C:y=ax2+bx+c(a<0)過原點,與x軸的另一個交點為B(4,0),A為拋物線C的頂點.
(1)如圖1,若∠AOB=60°,求拋物線C的解析式;
(2)如圖2,若直線OA的解析式為y=x,將拋物線C繞原點O旋轉180°得到拋物線C′,求拋物線C、C′的解析式;
(3)在(2)的條件下,設A′為拋物線C′的頂點,求拋物線C或C′上使得PB=PA′的點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知4x2mx+25是完全平方式,則常數m的值為( 。

A.10B.±10C.20D.±20

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某工廠現有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產A、B兩種產品50件.生產一件A產品需要甲種原料9千克,乙種原料3千克,可獲利潤700元;生產一件B產品,需要甲種原料4千克,乙種原料10千克,可獲利潤1200元.

(1)設生產xA種產品,寫出其題意x應滿足的不等式組;

(2)由題意有哪幾種按要求安排A、B兩種產品的生產件數的生產方案?請您幫助設計出來.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】方程3x+1m+4的解是x2,則m值是( 。

A.2B.5C.3D.1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】三角形的重心是三角形三條( )的交點。

A. 中線 B. C. 角平分線 D. 垂直平分線

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列不能作為判定四邊形ABCD為平行四邊形的條件的是(

A. ABCD,ADBC B. ABCD

C. ABCD,AD∥BC D. AB∥CDAD∥BC

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视