【題目】如圖,一直角三角形的直角頂點P在邊長為1的正方形ABCD對角線AC上運動(點P與A、C兩點不重合)且它的一條直角邊始終經過點D,另一直角邊與射線BC交于點E.
(1)當點E在BC邊上時,
①求證:△PBC≌△PDC;
②判斷△PBE的形狀,并說明理由;
(2)設AP=x,△PBE的面積為y.
①求出y關于x的函數關系式,并寫出x的取值范圍;
②當x取何值時,y取得最大值,并求出這個最大值.
【答案】(1)①見解析;②△PBE是等腰三角形;(2)①;當x=
時,y最大值=
.
【解析】
(1)①根據SAS證明兩三角形全等;
②由△PBC≌△PDC得∠PBC=∠PDC,由∠BCD=∠DPE=90°,∠PEB=∠PDC,∠PEB=∠PBC即可證明PB=PE,即△PBE為等腰三角形;
(2)①作高線PF,分別計算BE和PF的長,根據三角形面積公式可得y關于x的函數關系式;
②將①中所得二次函數的解析式配方后可得結論.
解:(1)①∵四邊形ABCD是正方形,
∴BC=DC,∠BCD=90°,AC平分∠BCD.
∴∠BCP=∠DCP=45°.
∵PC=PC,
∴△PBC≌△PDC (SAS);
②△PBE是等腰三角形,理由是:
由△PBC≌△PDC可知,∠PBC=∠PDC.
∵∠BCD=∠DPE=90°,
∴∠PDC+∠PEC=180°,
又∠PEB+∠PEC=180°,
∴∠PEB=∠PDC,
∴∠PEB=∠PBC.
∴PB=PE,即△PBE是等腰三角形.
(2)①如圖1,過點P作PF⊥BC,垂足為F,則BF=FE.
∵AP=x,AC=,
∴PC=﹣x,PF=FC=
BF=FE=1﹣FC=1﹣(1﹣x)=
x.
∴S△PBE==BFPF=
x(1﹣
x)=
.
即
②y==
∵a=﹣<0,
∴當x=時,y最大值=
.
科目:初中數學 來源: 題型:
【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統計圖,請回答下列問題:
(1)這次被調查的學生共有 人;
(2)請你將條形統計圖(2)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現優秀,現決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設剪去的小正方形邊長是xcm,根據題意可列方程為( )
A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32
C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與
軸交于點
,與
軸交于點
,拋物線
經過點
,
.
(1)求點B的坐標和拋物線的解析式;
(2)M(m,0)為x軸上一個動點,過點M垂直于x軸的直線與直線AB和拋物線分別交于點P、N,
①點在線段
上運動,若以
,
,
為頂點的三角形與
相似,求點
的坐標;
②點在
軸上自由運動,若三個點
,
,
中恰有一點是其它兩點所連線段的中點(三點重合除外),則稱
,
,
三點為“共諧點”.請直接寫出使得
,
,
三點成為“共諧點”的
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店新進一種臺燈.這種臺燈的成本價為每個30元,經調查發現,這種臺燈每天的銷售量y(單位:個)是銷售單價x(單位:元)(30≤x≤60)的一次函數.
x | 30 | 35 | 40 | 45 | 50 |
y | 30 | 25 | 20 | 15 | 10 |
(1)求銷售量y與銷售單價x之間的函數表達式;
(2)設這種臺燈每天的銷售利潤為w元.這種臺燈銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某手機店銷售一部A型手機比銷售一部B型手機獲得的利潤多50元,銷售相同數量的A型手機和B型手機獲得的利潤分別為3000元和2000元.
(1)求每部A型手機和B型手機的銷售利潤分別為多少元?
(2)該商店計劃一次購進兩種型號的手機共110部,其中A型手機的進貨量不超過B型手機的2倍.設購進B型手機n部,這110部手機的銷售總利潤為y元.
①求y關于n的函數關系式;
②該手機店購進A型、B型手機各多少部,才能使銷售總利潤最大?
(3)實際進貨時,廠家對B型手機出廠價下調m(30<m<100)元,且限定商店最多購進B型手機80臺.若商店保持兩種手機的售價不變,請你根據以上信息及(2)中的條件,設計出使這110部手機銷售總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校課程中心為了了解學生對開設的3D打印、木工制作、機器人和電腦編程四門課程的喜愛程度,隨機調查了部分學生,每人只能選一項最喜愛的課程.圖①是四門課程最喜愛人數的扇形統計圖,圖②是四門課程男、女生最喜愛人數的條形統計圖.
(1)求圖①中的值,補全圖②中的條形統計圖,標上相應的人數;
(2)若該校共有1800名學生,則該校最喜愛3D打印課程的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,若二次函數y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數的最大值為a+b+c②9a+3b+c>0:③b2<4ac④c=﹣3a⑤當y<0時,﹣1<x<3,其中正確的個數是_____(填序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小紅參加學校組織的慶祝黨的十九大勝利召開知識競賽,答對最后兩道單選題就順利通關,第一道單選題有3個選項,第二道單選題有4個選項,可是小紅這兩道題都不會,不過競賽規則規定每位選手有兩次求助機會,使用“求助”一次可以讓主持人去掉其中一題的一個錯誤選項,主持人提醒小紅可以使用兩次“求助”.
(1)如果小紅兩次“求助”都在第一道題中使用,那么小紅通關的概率是 .
(2)如果小紅將每道題各用一次“求助”,請用樹狀圖或者列表來分析她順序通關的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com