精英家教網 > 初中數學 > 題目詳情

如圖,在坐標系中,菱形ABCD的邊BC與x軸重合,點B與原點重合,AB=10, ∠ABC=60°.動點P從點B出發沿BC邊以每秒1個單位長的速度勻速運動;動點Q從點D出發沿折線DC-CB-BA以每秒3個單位長的速度勻速運動,過點P作PF⊥BC,交折線AB-AC于點E,交直線AD于點F.若P、Q兩點同時出發,當其中一點到達終點時整個運動隨之停止,設運動時間為t秒.

(1)寫出點A與點D的坐標

(2)當t=3秒時,試判斷QE與AB之間的位置關系?

(3)當Q在線段DC上運動時,若△PQF為等腰三角形,求t的值;

(4)設△PQE的面積為S,求S與t的函數關系式;

 

【答案】

(1)  A(5,)  D(15,

(2) 當t=3時,EQ⊥ AB

過A作AM//EQ,

 ∵BP=3時,∠B=60°∴BE=6,

∴AE=10-6=4,

∴AE=QM=4,

∴DM=3×3-4=5,

∴DM=AD,又∵∠ADC=60°,

∴∠AMD=90°,

∴∠AEQ=90°,

∴EQ⊥AB。

(3)P點坐標為(t,0),F坐標為(t, ),Q(,

(1)當FQ=PQ時,t= 

 (2)當PF=FQ時,,

∴t1,t2=5(舍)

(3)當PF=PQ時,

∴t1 (舍),t2=,

∴當t= 時,△PQF為等腰△。

(4)0∠t≤時,

      S=10×--

      =-,

        <t≤5時,

S=

=+      

        5<t<6時,

S=

6<t時≤,

S=

<t≤10,

S=

    =-

【解析】(1)利用菱形的邊角關系求出A、D點坐標;

(2)過A作AM//EQ,先算出DM的長,然后根據邊角的關系得出∠AMD=90°,再根據四邊形AEQM是平行四邊形得出∠AEQ=90°,從而得出EQ⊥AB。

(3)分PF=FQ、FQ=PQ、PF=PQ三種情況進行討論;

(4)分五種情況進行討論。

 

練習冊系列答案
相關習題

科目:初中數學 來源:2010--2011學年度山東濰坊市四縣市七年級第二學期期末質量監測數學 題型:解答題

(11·賀州)(本題滿分6分)

如圖,在平面直角坐標系中,點O為原點,反比例函數 的圖象經過點(1,4),菱

形OABC的頂點A在函數的圖象上,對角線OB在x軸上.

(1)求反比例函數的關系式;

(2)直接寫出菱形OABC的面積.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视