【題目】已知如圖,D是△ABC的邊AB上一點,DE∥BC,交邊AC于點E,延長DE至點F,使EF=DE,連接BF,交邊AC于點G,連接CF.
(1)求證:;
(2)如果CF2=FG·FB,求證:CG·CE=BC·DE.
【答案】(1)見解析;(2)見解析.
【解析】分析: (1)首先證明△ADE∽△ABC,△EFG∽△CBG,根據相似三角形的對應邊的比相等,以及DE=EF即可證得;
(2)首先證明△CFG∽△BFC,證得=
,∠FCE=∠CBF,然后根據平行線的性質證明∠FEG=∠CEF,即可證得△EFG∽△ECF,則
=
,即可證得
=
,則所證結論即可得到.
詳解:
(1)∵DE∥BC,
∴△ADE∽△ABC,△EFG∽△CBG,
∴=
,
=
.
又∵DE=EF,
∴=
,
∴=
;
(2)∵CF2=FG·FB,
∴=
.
又∠BFC=∠CFG,
∴△BCF∽△CGF,
∴=
,∠FCE=∠CBF.
又∵DF∥BC,
∴∠EFG=∠CBF,
∴∠FCE=∠EFG.
∵∠FEG=∠CEF,
∴△EFG∽△ECF,
∴=
.
又∵EF=DE,=
,
∴=
,即CG·CE=BC·DE.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,點M、N分別在AD、BC邊上,將矩形ABCD沿MN翻折,點C恰好落在AD邊上的點F處,若MD=1,∠MNC=60°,則AB的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】尺規作圖特有的魅力曾使無數人沉湎其中.傳說拿破侖通過下列尺規作圖考他的大臣:
①將半徑為r的⊙O六等分,依次得到A,B,C,D,E,F六個分點;
②分別以點A,D為圓心,AC長為半徑畫弧,G是兩弧的一個交點;
③連結OG.
問:OG的長是多少?
大臣給出的正確答案應是( 。
A. r B. (1+
)r C. (1+
)r D.
r
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:
在綜合與實踐課上,老師讓同學們以“矩形紙片的剪拼”為主題開展數學活動.如圖1,將矩形紙片沿對角線
剪開,得到
和
.并且量得
,
.
操作發現:
(1)將圖1中的以點
為旋轉中心,按逆時針方向旋轉
,使
,得到如圖2所示的
,過點
作
的平行線,與
的延長線交于點
,則四邊形
的形狀是________.
(2)創新小組將圖1中的以點
為旋轉中心,按逆時針方向旋轉,使
、
、
三點在同一條直線上,得到如圖3所示的
,連接
,取
的中點
,連接
并延長至點
,使
,連接
、
,得到四邊形
,發現它是正方形,請你證明這個結論.
實踐探究:
(3)縝密小組在創新小組發現結論的基礎上,進行如下操作:將沿著
方向平移,使點
與點
重合,此時
點平移至
點,
與
相交于點
,如圖4所示,連接
,試求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結論共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠D=∠C=90°,點E在DC上,且AE,BE分別平分∠BAD和∠ABC.
(1)求證:點E為CD中點;
(2)當AD=2,BC=3時,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,M、N、C三點的坐標分別為(,1),(3,1),(3,0),點A為線段MN上的一個動點,連接AC,過點A作
交y軸于點B,當點A從M運動到N時,點B隨之運動,設點B的坐標為(0,b),則b的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我縣木瓜村盛產優種紅富士蘋果,曾推選參加省農產品博覽會,某人去該地水果批發市場采購蘋果,他看中了A、B兩家蘋果.這兩家蘋果品質都一樣,市場售價都為6元/千克,但批發進價不相同.兩家蘋果批發進價如下:
A家規定:批發數量不超過1000千克,可按市場售價的92%優惠;批發數量多于1000千克但不超過2000千克,可全部按市場售價的90%優惠;批發數超過2000千克則全部按市場售價的88%優惠.
B家的規定如下表:
數量范圍(千克) | 0~500 | 500以上~1500 | 1500以上~2500 | 2500以上部分 |
批發進價(元) | 市場售價的95% | 市場售價的85% | 市場售價的75% | 市場售價的70% |
[表格說明: 家蘋果批發進價按分段計算,如:某人要批發蘋果2100千克,則批發進價
]
根據上述信息,請解答下列問題:
(1)如果此人要批發1000千克蘋果,則他在家批發需要_______元,在
家批發需要_______元;
(2)如果此人批發千克蘋果(1500<x<2000),則他在
家批發需要_______元,在
家批發需要_______元(用含
的代數式表示);
(3)現在此人要批發3000千克蘋果,你能幫助他選擇在哪家批發更優惠嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小王剪了兩張直角三角形紙片,進行了如下的操作:
操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,可求得△ACD的周長為 ;
(2)如果∠CAD:∠BAD=4:7,可求得∠B的度數為 ;
操作二:如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=9cm,BC=12cm,請求出CD的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com