【題目】如圖,在平行四邊形ABCD中,已知點E在AB上,點F在CD上,且AE=CF.
求證:DE=BF.
【答案】證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD.
∵AE=CF.
∴BE=FD,BE∥FD,
∴四邊形EBFD是平行四邊形,
∴DE=BF
【解析】方法一:根據平行四邊形的性質得出AB平行且等于CD,由AE=CF得出BE=FD,BE∥FD,即可證得四邊形EBFD是平行四邊形,根據平行四邊形的性質即可證得結論。
方法二:由已知平行四邊形得出對角相等,對邊相等,再證明△ADE≌△CBF,即可求得DE=CF.
【考點精析】本題主要考查了平行四邊形的判定與性質的相關知識點,需要掌握若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】已知二次函數 的圖象與
軸交于A、B兩點(A在B的左側),與
軸交于點C,頂點為D.
(1)求點A、B的坐標,并在下面直角坐標系中畫出該二次函數的大致圖象;
(2)設一次函數 的圖象經過B、D兩點,請直接寫出滿足
的
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為提高農民收入,某區一水果公園引進一種新型蟠桃,蟠桃進價為每公斤40元.上市后通過一段時間的試營銷發現:當蟠桃銷售單價在每公斤40元至90元之間(含40元和90元)時,每月的銷售量(公斤)與銷售單價
(元/公斤)之間的關系可近似地看作一次函數,其圖像如圖所示.
(1)求與
的函數解析式,并寫出定義域;
(2)如果想要每月獲得2400元的利潤,那么銷售單價應定為每公斤多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,任意四邊形ABCD,對角線AC、BD交于O點,過各頂點分別作對角線AC、BD的平行線,四條平行線圍成一個四邊形EFGH.試想當四邊形ABCD的形狀發生改變時,四邊形EFGH的形狀會有哪些變化?完成以下題目:
(1)①當ABCD為任意四邊形時,四邊形EFGH為___________;
②當四邊形ABCD為矩形時,四邊形EFGH為___________;
③當四邊形ABCD為菱形時,四邊形EFGH為___________;
④當四邊形ABCD為正方形時,四邊形EFGH為___________;
(2)請對(1)中①③你所寫的結論進行證明
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】周末,小明坐公交車到濱海公園游玩,他從家出發0.8小時后到達中心書城,逗留一段時間后繼續坐公交車到濱海公園,小明離家一段時間后,爸爸駕車沿相同的路線前往海濱公園.
如圖是他們離家路程s(km)與小明離家時間t(h)的關系圖,請根據圖回答下列問題:
(1)圖中自變量是 ,因變量是 ;
(2)小明家到濱海公園的路程為 km,小明在中心書城逗留的時間為 h;
(3)小明出發 小時后爸爸駕車出發;
(4)小明從中心書城到濱海公園的平均速度是多少?小明爸爸駕車的平均速度是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=ax+b的圖象與x軸、y軸交于A、B兩點,與反比例函數 的圖象相交于C、D兩點,分別過C、D兩點作y軸,x軸的垂線,垂足為E、F,連接CF、DE,有下列結論:①△CEF與△DEF的面積相等;②EF∥CD;③△DCE≌△CDF;④AC=BD;⑤△CEF的面積等于
,其中正確的個數有( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:
①4ac<b2;
②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當y>0時,x的取值范圍是﹣1≤x<3
⑤當x<0時,y隨x增大而增大
其中結論正確的個數是( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com