【題目】某商品的進價為每件30元,售價為每件40元,每周可賣出180件;如果每件商品的售價每上漲1元,則每周就會少賣出5件,但每件售價不能高于50元,設每件商品的售價上漲x元(x為整數),每周的銷售利潤為y元.
(1)求y與x的函數關系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價為多少元時,每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價定為多少元時,每周的利潤恰好是2145元?
【答案】(1)y=﹣5x2+130x+1800(0≤x≤15) (2)53元,2645元(3)43元
【解析】
(1)根據銷售利潤=每件的利潤·銷售數量,構建函數關系即可.
(2)利用二次函數的性質即可解決問題.
(3)列出方程,解方程即可解決問題.
解:(1)由題意得:
y=(40+x﹣30)(180﹣5x)=﹣5x2+130x+1800(0≤x≤15)
∵180﹣5x>0,且40+x≤55,x>0,
∴0≤x≤15.
(2)對稱軸:x=﹣=﹣
=13,
∵13<15,a=﹣5<0,
∴在對稱軸左側,y隨x增大而增大,
∴當x=13時,y最大值=﹣5×132+130×13+1800=2645,
∴售價=40+13=53元
答:當售價為53元時,可獲得最大利潤2645元.
(3)由題意得:﹣5x2+130x+1800=2145
解之得:x=3或23(不符合題意,舍去)
∴售價=40+3=43元.
答:售價為43元時,每周利潤為2145元.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,△ADE的頂點D,E分別在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,則∠EDC的度數為( 。
A. 17.5° B. 12.5° C. 12° D. 10°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,反比例函數y= 的圖象與一次函數y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數和反比例函數的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數值大于反比例函數值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數的圖象過A(2,0),B(0,-1)和C(4,5)三點。
(1)求二次函數的解析式;
(2)設二次函數的圖象與軸的另一個交點為D,求點D的坐標;
(3)在同一坐標系中畫出直線,并寫出當
在什么范圍內時,一次函數的值大于二次函數的值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,海中有一小島P,在距小島P的海里范圍內有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一名在校大學生利用“互聯網+”自主創業,銷售一種產品,這種產品的成本價10元/件,已知銷售價不低于成本價,且物價部門規定這種產品的銷售價不高于16元/件,市場調查發現,該產品每天的銷售量(件
與銷售價
(元/件)之間的函數關系如圖所示.
(1)求與
之間的函數關系式,并寫出自變量
的取值范圍;
(2)求每天的銷售利潤W(元與銷售價
(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com