【題目】如圖,,
,AE平分
,
,交AC延長線于F,且垂足為E,則下列結論:
;
;
,
;
其中正確的結論有______
填寫序號
【答案】①③⑤
【解析】
試題根據∠ACB=90°,BF⊥AE,得出∠ACB=∠BED=∠BCF=90°,推出∠F=∠ADC,證△BCF≌△ACD,根據全等三角形的性質即可判斷①②;假如AC+CD=AB,求出∠F+∠FBC≠90°,和已知矛盾,即可判斷③④,證根據全等三角形的判定ASA得出△BEA≌△FEA,推出BE=EF,即可判斷⑤.
解:∵∠ACB=90°,BF⊥AE,
∴∠ACB=∠BED=∠BCF=90°,
∴∠F+∠FBC=90°,∠BDE+∠FBC=90°,
∴∠F=∠BDE,
∵∠BDE=∠ADC,
∴∠F=∠ADC,
∵AC=BC,
∴△BCF≌△ACD,
∴AD=BF,∴①正確;②錯誤;
∵△BCF≌△ACD,
∴CD=CF,
∴AC+CD=AF,
假如AC+CD=AB,
∴AB=AF,∴∠F=∠FBA=65°,
∴∠FBC=65°﹣45°=20°,
∴∠F+∠FBC≠90°,∴③錯誤;④錯誤;
由△BCF≌△ACD,
∴AD=BF,
∵AE平分∠BAF,AE⊥BF,
∴∠BEA=∠FEA=90°,∠BAE=∠FAE,
∵AE=AE,∴△BEA≌△FEA,
∴BE=EF,
∴⑤正確;
故答案為:①③⑤.
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c的圖象,下列結論:①二次三項式ax2+bx+c的最大值為4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的兩根之和為﹣1;④使y≤3成立的x的取值范圍是x≥0.其中正確的結論有(填上序號即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點D、E、F分別是邊AB、AC、BC的中點,要判定四邊形DBFE是菱形,下列所添加條件不正確的是( 。
A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系內,已知直線l1經過原點O 及A(2,2 )兩點,將直線l1向右平移4個單位后得到直線l2 , 直線l2與x 軸交于點B.
(1)求直線l2的函數表達式;
(2)作∠AOB 的平分線交直線l2于點C,連接AC.求證:四邊形OACB是菱形;
(3)設點P 是直線l2上一點,以P 為圓心,PB 為半徑作⊙P,當⊙P 與直線l1相切時,請求出圓心P 點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數,它的圖象與
軸交于點
,與
軸交于點
.
點
的坐標為________,點
的坐標為________;
畫出此函數圖象;
畫出該函數圖象向下平移
個單位長度后得到的圖象;
寫出一次函數
圖象向下平移
個單位長度后所得圖象對應的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC,△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)在圖①中,請你通過觀察、測量、猜想,寫出AB與AP所滿足的數量關系和位置關系;
(2)將△EFP沿直線l向左平移到圖②的位置時,EP交AC于點Q,連接AP,BQ,猜想并寫出BQ與AP所滿足的數量關系和位置關系,請證明你的猜想;
(3)將△EFP沿直線l向左平移到圖③的位置時,EP的延長線交AC的延長線于點Q,連接AP,BQ,你認為(2)中所猜想的BQ與AP的數量關系與位置關系還成立嗎?若成立,給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=3,BC=4,點P為AB邊上任一點,過P分別作PE⊥AC于E,PF⊥BC于F,則線段EF的最小值是__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,角平分線AD、BE、CF相交于點H,過H點作HG⊥AC,垂足為G,那么∠AHE和∠CHG的大小關系為( 。
A. ∠AHE>∠CHG B. ∠AHE<∠CHG C. ∠AHE=∠CHG D. 不一定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列各圖是在同一直角坐標系內,二次函數y=ax2+(a+c)x+c與一次函數y=ax+c的大致圖象,有且只有一個是正確的,正確的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com