【題目】在和
中,
,
,將
放置在
上,使得
的兩條邊
、
分別經過點
、
.
(1)當將如圖(1)放置在
上時,求
的大小;
(2)當將如圖(2)放置在
上時,求
的大小.
【答案】(1);(2)
.
【解析】
(1)根據三角形的內角和可知:∠D=180°-70°=110°,所以∠ABC+∠ACB=140°,∠DBC+BCD=70°;在根據∠ABD+∠ACD=(∠ABC+∠DBC)+(∠ACB+∠DCB)即可得出.
(2)根據三角形的內角和可知:∠D=180°-70°=110°,所以∠DBC+∠DCB=70°,所以∠ABD+∠ACD=(∠ABC+∠ACB)-(∠BCD+∠CBD)=70°.
解:(1)由題意可知:∠D=180°-70°=110°,
∴∠DBC+∠DCB=180°-∠D=70°,
∵∠ABC+∠ACB=180°-∠A=140°,
∴∠ABD+∠ACD=(∠ABC+∠DBC)+(∠ACB+∠DCB)=210°
(2)在△ABC中,∠A=40°,
∴∠ABC+∠ACB=140°,
在△DEF中,∠E+∠F=70°,
∴∠D=110°,
∴∠BCD+∠CBD=180°-∠D=70°,
∴∠ABD+∠ACD=(∠ABC+∠ACB)-(∠BCD+∠CBD)=70°.
科目:初中數學 來源: 題型:
【題目】將直角三角板ABC繞直角頂點C逆時針旋轉角度,得到△DCE,其中CE與AB交于點F,∠ABC=30°,連接BE,若△BEF為等腰三角形(即有兩內角相等),則旋轉角
的值為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為弘揚中華傳統文化,黔南州近期舉辦了中小學生“國學經典大賽”,比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式為兩人對抗賽,即把四種比賽項目寫在4張完全相同的卡片上,比賽時,比賽的兩人從中隨機抽取1張卡片作為自己的比賽項目(不放回,且每人只能抽取一次)比賽時,小紅和小明分到一組.(1)小明先抽取,那么小明抽到唐詩的概率是多少?
(2)小紅擅長唐詩,小紅想:“小明先抽取,我后抽取”抽到唐詩的概率是不同的,且小明抽到唐詩的概率更大,若小紅后抽取,小紅抽中唐詩的概率是多少?小紅的想法對嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形 ABCD 的對角線 AC 與 BD 相交于點 O,CE∥BD, DE∥AC , AD=2, DE=2,則四邊形 OCED 的面積為( 。
A. 2 B. 4 C. 4
D. 8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B兩個村莊的坐標分別為(2,2)、(7,4),一輛汽車從原點O出發,在x軸上行駛.
(1)汽車行駛到什么位置時離村莊A最近?寫出此位置的坐標.
(2)汽車行駛到什么位置時離村莊B最近?寫出此位置的坐標.
(3)請在圖中畫出汽車到兩村莊的距離和最短的位置,并求出此最短的距離和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車同時分別從 A,B 兩處出發,沿直線 AB 作勻速運動,同時到達C 處,B 在 AC 上,甲的速度是乙的速度的1.5 倍,設 t(分)后甲、 乙兩遙控車與 B 處的距離分別為 d1,d2,且 d1,d2 與出發時間 t 的函數關系如圖,那么在兩車相遇前,兩車與 B 點的距離相等時,t 的值為( )
A.0.4B.0.5C.0.6D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉90°至△DBE后,再把△ABC沿射線平移至△FEG,DE、FG相交于點H.
(1)判斷線段DE、FG的位置關系,并說明理由;
(2)連結CG,求證:四邊形CBEG是正方形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直角梯形OABC的頂點A的坐標為(4,0),直線y = -x + 3經過頂點 B,與y軸交于頂點C,AB // OC.
(1)求頂點B的坐標.
(2)如 圖2,直線 L 經過點 C,與直線 AB 交于點 M,點 O′為點 O 關于直線L的對稱點,聯 結 CO′,并延長交直線AB于第一象限的點 D,當CD=5 時,求直線 L的解析式;
(3)在(2)條件下,點P在直線 L上運動,點Q在直線OD上運動,以 P、Q、B、C 為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點P坐標;若不能,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com