【題目】如圖1,點E,F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,FD之間的數量關系.
小聰把△ABE繞點A逆時針旋轉90°至△ADG,通過證明△AEF≌△AGF;從而發現并證明了EF=BE+FD.
(1)如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據小聰的發現給你的啟示寫出EF、BE、DF之間的數量關系,并證明;
(2)如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.
【答案】
(1)
解:DF=EF+BE.
理由:如圖1所示,∵AB=AD,
∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,
∵∠ADC=∠ABE=90°,
∴點C、D、G在一條直線上,
∴EB=DG,AE=AG,∠EAB=∠GAD,
∵∠BAG+∠GAD=90°,
∴∠EAG=∠BAD=90°,
∵∠EAF=45°,
∴∠FAG=∠EAG﹣∠EAF=90°﹣45°=45°,
∴∠EAF=∠GAF,
在△EAF和△GAF中,
,
∴△EAF≌△GAF,
∴EF=FG,
∵FD=FG+DG,
∴DF=EF+BE
(2)
解:∵∠BAC=90°,AB=AC,
∴將△ABE繞點A順時針旋轉90°得△ACG,連接FG,如圖2,
∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,
∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,
∴FG2=FC2+CG2=BE2+FC2;
又∵∠EAF=45°,
而∠EAG=90°,
∴∠GAF=90°﹣45°,
在△AGF與△AEF中,
,
∴△AEF≌△AGF,
∴EF=FG,
∴CF2=EF2﹣BE2=52﹣32=16,
∴CF=4.
【解析】(1)把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,證出△AFE≌△AFG,根據全等三角形的性質得出EF=FG,即可得出答案;(2)根據旋轉的性質得AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根據勾股定理有FG2=FC2+CG2=BE2+FC2;根據全等三角形的性質得到FG=EF,利用勾股定理可得CF.
【考點精析】本題主要考查了全等三角形的性質和勾股定理的概念的相關知識點,需要掌握全等三角形的對應邊相等; 全等三角形的對應角相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】為了節省空間,家里的飯碗一般是擺起來存放的,如果6只飯碗(注:飯碗的大小形狀都一樣,下同)擺起來的高度為15cm,9只飯碗擺起來的高度為20cm,李老師家的碗櫥每格的高度為36cm,則李老師一摞碗最多只能放__只.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,我們把橫 、縱坐標都是整數的點叫做整點.已知點
A(0,4),點B是軸正半軸上的整點,記△AOB內部(不包括邊界)的整點個數為m.當m=3時,點B的橫坐標的所有可能值是 ▲ ;當點B的橫坐標為4n(n為正整數)時,m= (用含n的代數式表示.)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是一臺放置在水平桌面上的筆記本電腦,將其側面抽象成如圖2所示的幾何圖形,若顯示屏所在面的側邊AO與鍵盤所在面的側邊BO長均為24cm,點P為眼睛所在位置,D為AO的中點,連接PD,當PD⊥AO時,稱點P為“最佳視角點”,作PC⊥BC,垂足C在OB的延長線上,且BC=12cm.
(1)當PA=45cm時,求PC的長;
(2)若∠AOC=120°時,“最佳視角點”P在直線PC上的位置會發生什么變化?此時PC的長是多少?請通過計算說明.(結果精確到0.1cm,可用科學計算器,參考數據: ≈1.414,
≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數y= 在第一象限的圖象經過點B,與OA交于點P,且OA2﹣AB2=18,則點P的橫坐標為( )
A.9
B.6
C.3
D.3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】宿州市高新區某電子電路板廠到安徽大學從2018年應屆畢業生中招聘公司職員,對應聘者的專業知識、英語水平、參加社會實踐與社團活動等三項進行測試或成果認定,三項的得分滿分都為100分,三項的分數分別按5∶3∶2的比例記入每人的最后總分,有4位應聘者的得分如下表所示.
| 專業知識 | 英語水平 | 參加社會實踐與 社團活動等 |
甲 | 85 | 85 | 90 |
乙 | 85 | 85 | 70 |
丙 | 80 | 90 | 70 |
丁 | 90 | 90 | 50 |
(1)分別算出4位應聘者的總分;
(2)表中四人“專業知識”的平均分為85分,方差為12.5,四人“英語水平”的平均分為87.5分,方差為6.25,請你求出四人“參加社會實踐與社團活動等”的平均分及方差;
(3)分析(1)和(2)中的有關數據,你對大學生應聘者有何建議?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】放風箏是大家喜愛的一種運動,星期天的上午小明在市政府廣場上放風箏.如圖,他在A處不小心讓風箏掛在了一棵樹梢上,風箏固定在了D處,此時風箏AD與水平線的夾角為30°,為了便于觀察,小明迅速向前邊移動,收線到達了離A處10米的B處,此時風箏線BD與水平線的夾角為45°.已知點A,B,C在同一條水平直線上,請你求出小明此時所收回的風箏線的長度是多少米?(風箏線AD,BD均為線段, ≈1.414,
≈1.732,最后結果精確到1米).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題:①對頂角相等;②同位角相等,兩直線平行;③若|a|=|b|,則a=b;④若x=2,則2|x|-1=3.以上命題是真命題的有( ).
A. ①②③④ B. ①④ C. ②④ D. ①②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com