【題目】已知雙曲線y= (x>0),直線l1:y﹣
=k(x﹣
)(k<0)過定點F且與雙曲線交于A,B兩點,設A(x1 , y1),B(x2 , y2)(x1<x2),直線l2:y=﹣x+
.
(1)若k=﹣1,求△OAB的面積S;
(2)若AB=
,求k的值;
(3)設N(0,2 ),P在雙曲線上,M在直線l2上且PM∥x軸,問在第二象限內是否存在一點Q,使得四邊形QMPN是周長最小的平行四邊形?若存在,請求出Q點的坐標.
【答案】
(1)
解:當k=﹣1時,l1:y=﹣x+2 ,
聯立得, ,化簡得x2﹣2
x+1=0,
解得:x1= ﹣1,x2=
+1,
設直線l1與y軸交于點C,則C(0,2 ).
S△OAB=S△AOC﹣S△BOC= 2
(x2﹣x1)=2
(2)
解:根據題意得: 整理得:kx2+
(1﹣k)x﹣1=0(k<0),
∵△=[ (1﹣k)]2﹣4×k×(﹣1)=2(1+k2)>0,
∴x1、x2 是方程的兩根,
∴ ①,
∴AB= =
,
= ,
= ,
將①代入得,AB= =
(k<0),
∴ =
,
整理得:2k2+5k+2=0,
解得:k=﹣2,或 k=﹣
(3)
解:∵y﹣ =k(x﹣
)(k<0)過定點F,
∴x= ,y=
,
∴F( ,
),
設P(x, ),則M(﹣
+
,
),
則PM=x+ ﹣
=
=
,
∵PF= =
,
∴PM=PF.
∴PM+PN=PF+PN≥NF=2,
當點P在NF上時等號成立,此時NF的方程為y=﹣x+2 ,
由(1)知P( ﹣1,
+1),
∴當P( ﹣1,
+1)時,PM+PN最小,此時四邊形QMPN是周長最小的平行四邊形,
∴Q(﹣ ,2
)
【解析】(1)求出A、B點的橫坐標,根據S△OAB=S△AOC﹣S△BOC計算即可.(2)利用方程組以及根與系數的關系,求出AB,根據AB=
,列出方程即可解決問題.(3)首先證明PM=PF.推出PM+PN=PF+PN≥NF=2推出當點P在NF上時等號成立,此時NF的方程為y=﹣x+2
,由(1)知P(
﹣1,
+1),由此即可解決問題.
【考點精析】解答此題的關鍵在于理解反比例函數的性質的相關知識,掌握性質:當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減小; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大.
科目:初中數學 來源: 題型:
【題目】關于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數根.
(1)求m的取值范圍;
(2)寫出一個滿足條件的m的值,并求此時方程的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有兩個不相等的實數根.
(1)求m的取值范圍;
(2)若原方程的兩個實數根為x1、x2 , 且滿足x12+x22=|x1|+|x2|+2x1x2 , 求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,A是⊙O上一點,半徑OC的延長線與過點A的直線交于B點,OC=BC,AC= OB.
(1)求證:AB是⊙O的切線;
(2)若∠ACD=45°,OC=2,求弦CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將函數y=2x+b(b為常數)的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數y=|2x+b|(b為常數)的圖象.若該圖象在直線y=2下方的點的橫坐標x滿足0<x<3,則b的取值范圍為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在菱形ABCD中,AC=2,BD=2 ,AC,BD相交于點O.
(1)求邊AB的長;
(2)如圖2,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉,其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F,連接EF與AC相交于點G. ①判斷△AEF是哪一種特殊三角形,并說明理由;
②旋轉過程中,當點E為邊BC的四等分點時(BE>CE),求CG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,四邊形ABCD是梯形,AD∥BC,CA是∠BCD的平分線,且AB⊥AC,AB=4,AD=6,則tanB=( )
A.2
B.2
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(不含B、C兩點),將△ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.則以下結論中正確的有(寫出所有正確結論的序號)
①△CMP∽△BPA;
②四邊形AMCB的面積最大值為10;
③當P為BC中點時,AE為線段NP的中垂線;
④線段AM的最小值為2 ;
⑤當△ABP≌△ADN時,BP=4 ﹣4.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com