精英家教網 > 初中數學 > 題目詳情

如圖,等邊△ABC的邊長為4,E是邊BC上的動點,EH⊥AC于H,過E作EF∥AC,交線段AB于點F,在線段AC上取點P,使PE=EB.設EC=x(0<x≤2).

(1)請直接寫出圖中與線段EF相等的兩條線段(不再另外添加輔助線);
(2)Q是線段AC上的動點,當四邊形EFPQ是平行四邊形時,求平行四邊形EFPQ的面積(用含的代數式表示);
(3)當(2)中 的平行四邊形EFPQ面積最大值時,以E為圓心,r為半徑作圓,根據⊙E與此時平行四邊形EFPQ四條邊交點的總個數,求相應的r的取值范圍.

(1)BE、PE;
(2);
(3)當⊙E與平行四邊形EFPQ的四條邊交點的總個數是2個時,0<r<
當⊙E與平行四邊形EFPQ的四條邊交點的總個數是4個時,r=;  
當⊙E與平行四邊形EFPQ的四條邊交點的總個數是6個時,<r<2;
當⊙E與平行四邊形EFPQ的四條邊交點的總個數是3個時,r=2;
當⊙E與平行四邊形EFPQ的四條邊交點的總個數是0個時,r>2.

解析試題分析:(1)根據三角形ABC是等邊三角形和EF∥AC,可得等邊三角形BEF,則可寫出與EF相等的線段;
(2)根據(1)可知EF=BE=4﹣x,要求平行四邊形的面積,只需求得EF邊上的高.作EH⊥AC于H,根據30度的直角三角形EHC進行表示EH的長,進一步求得平行四邊形的面積;
(3)根據二次函數的頂點式或頂點的公式法求得平行四邊形的面積的最大值時x的值,分析平行四邊形的位置和形狀.然后根據公共點的個數分析圓和平行四邊形的各邊的位置關系,進一步根據圓和直線的位置關系求得r的取值范圍.
試題解析:(1)BE、PE、BF三條線段中任選兩條;
(2)作EQ∥FP交FE于E,
設EC為x
∵EH⊥AC,
∴∠EHC=90°
∴△CHE為直角三角形
∵△ABC為等邊三角形,
∴∠C=60°
在Rt△CHE中,∠CHE=90°,∠C=60°,
∠HEC=180°﹣∠C﹣∠EHC=30°
∴2HC=EC
∵HE2=EC2﹣HC2
,
∵EF∥AC,FP∥EQ
∴四邊形EFPQ為平行四邊形
∴PQ=FE
又∵PE=BE
∴PQ=EF=BE=4﹣x
;

(3)因為,所以當x=2時,平行四邊形EFPQ的面積最大.此時E、F、P分別為△ABC的三邊BC、AB、AC的中點,且C、Q重合,四邊形EFPQ是邊長為2的菱形(如圖).

過點E點作ED⊥FP于D,則ED=EH=
當⊙E與平行四邊形EFPQ的四條邊交點的總個數是2個時,0<r<;
當⊙E與平行四邊形EFPQ的四條邊交點的總個數是4個時,r=;  
當⊙E與平行四邊形EFPQ的四條邊交點的總個數是6個時,<r<2;
當⊙E與平行四邊形EFPQ的四條邊交點的總個數是3個時,r=2;
當⊙E與平行四邊形EFPQ的四條邊交點的總個數是0個時,r>2.
考點:二次函數綜合題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

某市政府大力扶持大學生創業.李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發現,每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數:
(1)設李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(3)根據物價部門規定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

在平面直角坐標系中,現將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點A(0,2),點C(,0),如圖所示:拋物線經過點B。

(1)求點B的坐標;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

以直線為對稱軸的拋物線軸交于A、B兩點,其中點A的坐標為.
(1)求點B的坐標;
(2)設點M、N在拋物線線上,且,試比較、的大小.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某服裝經營部每天的固定費用為300元,現試銷一種成本為每件80元的服裝.規定試銷期間銷售單價不低于成本單價,且獲利不得高于35%.經試銷發現,每件銷售單價相對成本提高x(元)(x為整數)與日均銷售量y(件)之間的關系符合一次函數y=kx+b,且當x=10時,y=100;x=20時,y=80.
(1)求一次函數y=kx+b的關系式;
(2)設該服裝經營部日均獲得毛利潤為W元(毛利潤=銷售收入-成本-固定費用),求W關于x的函數關系式;并求當銷售單價定為多少元時,日均毛利潤最大,最大日均毛利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商場經營某種品牌的玩具,購進時的單價是30元,根據市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x > 40),請你分別用x的代數式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:

銷售單價(元)
x
銷售量y(件)
 
銷售玩具獲得利潤w(元)
 
(2)在(1)條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元?
(3)在(1)條件下,若玩具廠規定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知拋物線的解析式為
(1)求證:不論m為何值,此拋物線與x軸必有兩個交點,且兩交點A、B之間的距離為定值;
(2)設點P為此拋物線上一點,若△PAB的面積為8,求符合條件的點P的坐標;
(3)若(2)中△PAB的面積為S(S>0),試根據面積S值的變化情況,確定符合條件的點P的個數(本小題直接寫出結論,不要求寫出計算、證明過程).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,二次函數的頂點坐標為(0,2),矩形ABCD的頂點B.C在x軸上,A.D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內。

(1)求二次函數的解析式;
(2)設點D的坐標為(x,y),試求矩形ABCD的周長P關于自變量x的函數解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長為9?試證明你的結論。

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:已知二次函數的圖象對稱軸為,且過點B(-1,0).求此二次函數的表達式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视