【題目】在△ABC中,已知AB=AC=10,BC=16,點D在BC上,且BD= ,連接AD,求證:AD⊥AC.
【答案】證明:過點A作AE⊥BC于E,如圖所示: ∵AB=AC=10,BC=16,
∴BE= BC=8,
在Rt△ABE中,由勾股定理得:AE=6,
在Rt△ADE中,由勾股定理得:AD2=AE2+DE2= ,
在△ADC中:DC2=(BC﹣BD)2= ,AC2=100,
∴AC2+AD2=DC2 ,
∴△DAC為直角三角形,
∴DA⊥AC.
【解析】過點A作AE⊥BC于E,由等腰三角形的性質得出BE= BC=8,由勾股定理得:AE=6,AD2=AE2+DE2=
,DC2=(BC﹣BD)2=
,AC2=100,得出AC2+AD2=DC2 , 證出△DAC為直角三角形即可.
【考點精析】關于本題考查的等腰三角形的性質和勾股定理的概念,需要了解等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】一項工程,若由甲、乙兩公司合作18天可以完成,共需付施工費144000元,若甲、乙兩公司單獨完成此項工程,甲公司所用時間是乙公司的1.5倍,已知甲公司每天的施工費比乙公司每天的施工費少2000元.
(1)求甲、乙兩公司單獨完成此項工程,各需多少天?
(2)若由一個公司單獨完成這項工程,哪個公司的施工費較少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A、B兩點分別在x軸、y軸上,OA=3,OB=4,連接AB.點P在平面內,若以點P、A、B為頂點的三角形與△AOB全等(點P與點O不重合),則點P的坐標為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com