精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示的拋物線對稱軸是直線x=1,與x軸有兩個交點,與y軸交點坐標是(0,3),把它向下平移2個單位后,得到新的拋物線解析式是 y=ax2+bx+c,以下四個結論:
①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>10中,判斷正確的有(

A.②③④
B.①②③
C.②③
D.①④

【答案】A
【解析】解:根據題意平移后的拋物線的對稱軸x=﹣ =1,c=3﹣2=1,
由圖象可知,平移后的拋物線與x軸有兩個交點,
∴b2﹣4ac>0,故①錯誤;
∵拋物線開口向上,∴a>0,b=﹣2a<0,
∴abc<0,故②正確;
∵平移后拋物線與y軸的交點為(0,1)對稱軸x=1,
∴點(2,1)點(0,1)的對稱點,
∴當x=2時,y=1,
∴4a+2b+c=1,故③正確;
由圖象可知,當x=﹣1時,y>0,
∴a﹣b+c>0,故④正確.
故選A.
【考點精析】本題主要考查了二次函數圖象以及系數a、b、c的關系和二次函數圖象的平移的相關知識點,需要掌握二次函數y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c);平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(h,k)(2)對x軸左加右減;對y軸上加下減才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】下列說法不正確的是( )
A.選舉中,人們通常最關心的數據是眾數
B.從1、2、3、4、5中隨機取一個數,取得奇數的可能性比較大
C.數據3、5、4、1、﹣2的中位數是3
D.某游藝活動的中獎率是60%,說明參加該活動10次就有6次會獲獎

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線 (m<0)的頂點為A,交y軸于點C.

(1)求出點A的坐標(用含m的式子表示);
(2)平移直線y=x經過點A交拋物線C于另一點B,直線AB下方拋物線C上一點P,求點P到直線AB的最大距離
(3)設直線AC交x軸于點D,直線AC關于x軸對稱的直線交拋物線C于E、F兩點.若∠ECF=90°,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某農業觀光園計劃將一塊面積為900m2的園圃分成A,B,C三個區域,分別種植甲、乙、丙三種花卉,且每平方米栽種甲3株或乙6株或丙12株.已知B區域面積是A區域面積的2倍.設A區域面積為x(m2).
(1)求該園圃栽種的花卉總株數y關于x的函數表達式.
(2)若三種花卉共栽種6600株,則A,B,C三個區域的面積分別是多少?
(3)若三種花卉的單價(都是整數)之和為45元,且差價均不超過10元,在(2)的前提下,全部栽種共需84000元.請寫出甲、乙、丙三種花卉中,種植面積最大的花卉總價.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A,B,C,D在同一條直線上,點E,F分別在直線AD的兩側,且AE=DF,∠A=∠D,AB=DC.

(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE=時,四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為美化校園,計劃對面積為1800m2的區域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2
(2)若學校每天需付給甲隊的綠化費用為0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=4,將△ABC繞點B按逆時針方向旋轉30°后得到△A1BC1 , 則陰影部分的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】按照有關規定:距高鐵軌道 200米以內的區域內不宜臨路新建學校、醫院、敬老院和集中住宅區等噪聲敏感建筑物.
如圖是一個小區平面示意圖,矩形ABEF為一新建小區,直線MN為高鐵軌道,C、D是直線MN上的兩點,點C、A、B在一直線上,且DA⊥CA,∠ACD=30°.小王看中了①號樓A單元的一套住宅,與售樓人員的對話如下:

(1)小王心中一算,發現售樓人員的話不可信,請你用所學的數學知識說明理由;
(2)若一列長度為228米的高鐵以252千米/小時的速度通過時,則A單元用戶受到影響時間有多長?
(溫馨提示: ≈1.4, ≈1.7, ≈6.1)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A(0,4),B(3,0),連接AB,將△AOB沿過點B的直線折疊,使點A落在x軸上的點A′處,折痕所在的直線交y軸正半軸于點C,則直線BC的解析式為

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视