
解:(1)如圖1所示,
∵△ABC是等腰直角三角形,
∴AB=AC,∠BAC=90°,
即∠BAD+∠DAC=90°,
同理有AD=AE,∠DAC+∠CAE=90°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴BD=CE,
∴BC=CE+DC,
在Rt△ABC中,BC=

AC,
∴CE+DC=

AC;
(2)在圖2中,
∵△ABC是等腰直角三角形,
∴AB=AC,∠BAC=90°,
即∠BAE+∠EAC=90°,
同理有AD=AE,∠DAB+∠BAE=90°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴BD=CE,
又∵BC+BD=CD,
∴BC=CD-CE,
即

AC=CD-CE;
在圖3中,
∵AB=AC,∠BAD=∠CAE,AD=AE,
∴△ACE≌△ABD,
∴BD=CE,
即BC+CD=CE,
∴BC=CE-CD,
∴

AC=CE-CD.
故答案是

AC=CD-CE;

AC=CE-CD.
分析:(1)利用△ABC是等腰直角三角形,易得AB=AC,∠BAC=90°,即有∠BAD+∠DAC=90°,同理可得AD=AE,∠DAC+∠CAE=90°,從而可證∠BAD=∠CAE,從而利用SAS可證△BAD≌△CAE,那么BD=CE,于是BC=CE+DC,再利用勾股定理可知BC=

AC,進而可證CE+DC=

AC;
(2)同(1)可證△BAD≌△CAE,那么BD=CE,而BC+BD=CD,易證

AC=CD-CE;同理在圖3中可證

AC=CE-CD.
點評:本題考查了等腰直角三角形的性質、全等三角形的判定和性質、勾股定理.解題的關鍵是利用SAS證明△BAD≌△CAE.