精英家教網 > 初中數學 > 題目詳情
(2013•河北)如圖,四邊形ABCD中,點M,N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,則∠B=
95
95
°.
分析:根據兩直線平行,同位角相等求出∠BMF,∠BNF,再根據翻折的性質求出∠BMN和∠BNM,然后利用三角形的內角和定理列式計算即可得解.
解答:解:∵MF∥AD,FN∥DC,
∴∠BMF=∠A=100°,∠BNF=∠C=70°,
∵△BMN沿MN翻折得△FMN,
∴∠BMN=
1
2
∠BMF=
1
2
×100°=50°,
∠BNM=
1
2
∠BNF=
1
2
×70°=35°,
在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.
故答案為:95.
點評:本題考查了兩直線平行,同位角相等的性質,翻折變換的性質,三角形的內角和定理,熟記性質并準確識圖是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•河北)如圖1,M是鐵絲AD的中點,將該鐵絲首尾相接折成△ABC,且∠B=30°,∠C=100°,如圖2.則下列說法正確的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•河北)如圖,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12動點P從點A出發,沿折線AD-DC-CB以每秒1個單位長的速度運動到點B停止.設運動時間為t秒,y=S△EPF,則y與t的函數圖象大致是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•河北)如圖,一段拋物線:y=-x(x-3)(0≤x≤3),記為C1,它與x軸交于點O,A1;
將C1繞點A1旋轉180°得C2,交x軸于點A2;
將C2繞點A2旋轉180°得C3,交x軸于點A3;

如此進行下去,直至得C13.若P(37,m)在第13段拋物線C13上,則m=
2
2

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•河北)如圖,△OAB中,OA=OB=10,∠AOB=80°,以點O為圓心,6為半徑的優弧
MN
分別交OA,OB于點M,N.
(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉80°得OP′.求證:AP=BP′;
(2)點T在左半弧上,若AT與弧相切,求點T到OA的距離;
(3)設點Q在優弧
MN
上,當△AOQ的面積最大時,直接寫出∠BOQ的度數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视