【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;②-1≤a≤-;③對于任意實數m,a+b≥am2+bm總成立;④關于x的方程ax2+bx+c=n-1有兩個不相等的實數根.其中結論正確的個數為( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】
利用拋物線開口方向得到a<0,再由拋物線的對稱軸方程得到b=-2a,則3a+b=a,于是可對①進行判斷;利用2≤c≤3和c=-3a可對②進行判斷;利用二次函數的性質可對③進行判斷;根據拋物線y=ax2+bx+c與直線y=n-1有兩個交點可對④進行判斷.
∵拋物線開口向下,
∴a<0,
而拋物線的對稱軸為直線x=-=1,即b=-2a,
∴3a+b=3a-2a=a<0,所以①正確;
∵2≤c≤3,
而c=-3a,
∴2≤-3a≤3,
∴-1≤a≤-,所以②正確;
∵拋物線的頂點坐標(1,n),
∴x=1時,二次函數值有最大值n,
∴a+b+c≥am2+bm+c,
即a+b≥am2+bm,所以③正確;
∵拋物線的頂點坐標(1,n),
∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,
∴關于x的方程ax2+bx+c=n-1有兩個不相等的實數根,所以④正確.
故選D.
科目:初中數學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD相交于點O,AB⊥AC,AB=3,BC=5,點P從點A出發,沿AD以每秒1個單位的速度向終點D運動.連結PO并延長交BC于點Q.設點P的運動時間為t秒.
(1)求BQ的長,(用含t的代數式表示)
(2)當四邊形ABQP是平行四邊形時,求t的值
(3)當點O在線段AP的垂直平分線上時,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖中實線所示,函數y=|a(x﹣1)2﹣1|的圖象經過原點,小明同學研究得出下面結論:
①a=1;②若函數y隨x的增大而減小,則x的取值范圍一定是x<0;
③若方程|a(x﹣1)2﹣1|=k有兩個實數解,則k的取值范圍是k>1;
④若M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函數圖象的四個不同點,且m1<m2<m3<m4,則有m2+m3﹣m1=m4.其中正確的結論有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;②-1≤a≤-;③對于任意實數m,a+b≥am2+bm總成立;④關于x的方程ax2+bx+c=n-1有兩個不相等的實數根.其中結論正確的個數為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在同一平面內,若點P與△ABC三個頂點中的任意兩個頂點連接形成的三角形都是等腰三角形,則稱點P是△ABC的巧妙點.
(1)如圖1,求作△ABC的巧妙點P(尺規作圖,不寫作法,保留作圖痕跡).
(2)如圖2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙點P (尺規作圖,不寫作法,保留作圖痕跡),并直接寫出∠BPC的度數是 .
(3)等邊三角形的巧妙點的個數有( )
A.2 B.6 C.10 D.12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分別找一點M、N,當△AMN的周長最小時,∠AMN+∠ANM的度數是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點在
軸上,
,
,
,將
繞點
按順時針方向旋轉
得到
,則點
的坐標是( )
A. (2,-2) B. (2,-2
) C. (2
,2) D. (2
,2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與反比例函數
在第一象限內的圖象交于
、
兩點,且與
軸的正半軸交于
點.若
,
的面積為
,則
的值為( )
A. 6 B. 9 C. 12 D. 18
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
,在邊長為
的小正方形組成的網格中,
的頂點
、
均在格點上,點
在
軸上,點
的坐標為
.
點
關于點
中心對稱的點的坐標為________;
(2)繞點
順時針旋轉
后得到
,那么點
的坐標為________;線段
在旋轉過程中所掃過的面積是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com