【題目】請從以下兩個小題中任選一個作答,若多選,則按所選的第一題計分.
A.如圖,DE為△ABC的中位線,點F為DE上一點,且∠AFB=90°,若AB=8,BC=10,則EF的長為________.
B.小智同學在距大雁塔塔底水平距離為138米處,看塔頂的仰角為24.8(不考慮身高因素),則大雁塔市約為________米.(結果精確到0.1米)
【答案】1 70.4
【解析】
A,首先根據三角形的中位線定理求得DE的長,然后利用直角三角形斜邊上中線的性質可求得FD的長,則EF即可求得;
B、先作出圖形,則AB=138米,∠A=24.8°,最后,在Rt△ABC中,利用三角函數的定義可求得BC的長.
A、∵DE為△ABC的中位線,
∴DE=BC=
×10=5,
∵∠AFB為直角,D是AB的中點,即FD是直角△ABF的中線,
∴FD=AB=
×8=4,
∴EF=DE﹣FD=5﹣4=1,
故答案是:1;
B、如圖2,
在Rt△ABC中,
AB=138米,∠BAC=24.8°,
∵=tan24.8°,
∴BC=ABtan24.8°≈138×0.51≈70.4(米).
故答案為:70.4.
科目:初中數學 來源: 題型:
【題目】已知:如圖,AB=BC,∠ABC=90°,以AB為直徑的⊙O交OC與點D,AD的延長線交BC于點E,過D作⊙O的切線交BC于點F.下列結論:①CD2=CE·CB;②4EF 2=ED ·EA;③∠OCB=∠EAB;④.其中正確的只有____________________.(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AM是中線,D是AM所在直線上的一個動點(不與點A重合),DE∥AB交AC所在直線于點F,CE∥AM,連接BD,AE.
(1)如圖1,當點D與點M重合時,觀察發現:△ABM向右平移BC到了△EDC的位置,此時四邊形ABDE是平行四邊形.請你給予驗證;
(2)如圖2,圖3,圖4,是當點D不與點M重合時的三種情況,你認為△ABM應該平移到什么位置?直接在圖中畫出來.此時四邊形ABDE還是平行四邊形嗎?請你選擇其中一種情況說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=﹣1,點B的坐標為(1,0),則下列結論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結論有( )個.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小趙投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發現,當月內銷售單價不變,則月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數:.
(1)設小趙每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?并求出最大利潤.
(2)如果小趙想要每月獲得的利潤不低于2000元,那么如何制定銷售單價才可以實現這一目標?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形的邊長為4,在這個正方形內作等邊三角形
(三角形的頂點可以在正方形的邊上),使它們的中心重合,則
的頂點到正方形
的頂點的最短距離是___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數和
,以下說法:
①它們的圖象都是開口向上;②它們的對稱軸都是y軸,頂點坐標都是原點(0,0);③當x>0時,它們的函數y都是隨x的增大而增大;④它們的開口的大小是一樣的.
其中正確的說法有_______個.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com