【題目】英國曼徹斯特大學物理學家安德烈·蓋姆和康斯坦丁·諾沃肖洛夫,用微機械剝離法成功從石墨中分離出石墨烯,榮獲了諾貝爾物理學獎.石墨烯具有優異的光學、電學、 力學特性,在材料學、微納加工、能源、生物醫學和藥物傳遞等方面具有重要的應用前景,被認為是一種未來革命性的材料. 其理論厚度僅 0.000 000 000 34 m,將這個數據用科學記數法表示為_______m.
科目:初中數學 來源: 題型:
【題目】如圖,點D是Rt△ABC斜邊AB的中點,過點B、C分別作BE∥CD,CE∥BD.
(1)若∠A=60°,AC=,求CD的長;
(2)求證:BC⊥DE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣x2+2x.
(1)在給定的平面直角坐標系中,畫出這個函數的圖象;
(2)根據圖象,寫出當y<0時,x的取值范圍;
(3)若將此圖象沿x軸向左平移3個單位,再沿y軸向下平移1個單位,請直接寫出平移后圖象所對應的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子里有5個小球,分別標有數字﹣3,﹣2,﹣1,﹣,﹣
,這些小球除所標的數不同外其余都相同,先從盒子隨機摸出1個球,記下所標的數,再從剩下的球中隨機摸出1個球,記下所標的數.
(1)用畫樹狀圖或列表的方法求兩次摸出的球所標的數之積不大于1的概率.
(2)若以第一次摸出球上的數字為橫坐標,第二次摸出球上的數字為縱坐標確定一點,直接寫出該點在雙曲線y=上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖:點(1,3)在函數y=(x>0)的圖象上,矩形ABCD的邊BC在x軸上,E是對角線BD的中點,函數y=
(x>0)的圖象又經過A、E兩點,點E的橫坐標為m,解答下列問題:
(1)求k的值;
(2)求點A的坐標;(用含m代數式表示)
(3)當∠ABD=45°時,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知中,
厘米,
厘米,點
為
的中點.
(1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經過1秒后,與
是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等, 與
是否可能全等?若能,求出全等時點Q的運動速度和時間;若不能,請說明理由.
(2)若點Q以②中的運動速度從點C出發,點P以原來的運動速度從點B同時出發,都逆時針沿三邊運動,求經過多長時間點P與點Q第一次在
的哪條邊上相遇?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】人們在長期的數學實踐中總結了許多解決數學問題的方法,形成了許多光輝的數學想法,其中轉化思想是中學教學中最活躍,最實用,也是最重要的數學思想,例如將不規則圖形轉化為規則圖形就是研究圖形問題比較常用的一種方法.
問題提出:求邊長分別為、、
、
的三角形面積.
問題解決:
在解答這個問題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出邊長分別為
、
、
的格點三角形
(如圖),
是角邊為1和2的直角三角形斜邊,
是直角邊分別為1和3的直角三角形的斜邊,
是直角邊分別為2和3的直角三角形斜邊,用一個大長方形的面積減去三個直角三角形的面積,這樣不需求
的高,而借用網格就能計算它的面積.
(1)請直接寫出圖①中的面積為____________.
(2)類比遷移:求邊長分別為、
、
的三角形面積(請利用圖②的正方形網格畫出相應的
,并求出它的面積)
(3)思維拓展:求邊長分別為,的三角形的面積
(4)如圖(3),已知,以
,
為邊向外作正方形
,正方形
,連接
,若
,則六邊形
的面積是_________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com