精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在第一個A1BC中,∠B30°A1BCB,在邊A1B上任取一D,延長CA2A2,使A1A2A1D,得到第2A1A2D,在邊A2B上任取一點E,延長A1A2A3,使A2A3A2E,得到第三個A2A3E,按此做法繼續下去,第n個等腰三角形的底角的度數是_____度.

【答案】

【解析】

先根據∠B30°ABA1B求出∠BA1C的度數,在由A1A2A1D根據內角和外角的關系求出∠DA2A1的度數,同理求出∠EA3A2,∠FA4A3,即可得到第n個等腰三角形的底角的度數=

∵在ABA1中,∠B30°,ABA1B

∴∠BA1C75°,

A1A2A1D,∠BA1CA1A2D的外角,

∴∠DA2A1BA1C×75°37.5°;

同理可得,

EA3A2,∠FA4A3,

∴第n個等腰三角形的底角的度數=

故答案為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(14),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.Px軸上的一個動點.

(1)求此拋物線的解析式;

(2)PA+PB的值最小時,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題背景:在ABC中,ABBC、AC三邊的長分別為、、,求這個三角形的面積小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點ABC(即ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求ABC的高,而借用網格就能計算出它的面積.

1)請你利用上述方法求出ABC的面積.

2)在圖2中畫DEF,DE、EF、DF三邊的長分別為、、

①判斷三角形的形狀,說明理由.

②求這個三角形的面積.(直接寫出答案)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,AB=AC,在BC邊上有兩動點D、E,滿足2∠DAE=∠BAC,將AECA旋轉,使得ACAB重合,點E落到點E

1)求證:DAE’=∠DAE;

2)當BED=20°時,求DEA的度數;

3)當BD=1,EC=2BED又為直角三角形時,求BAC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的頂點C在第一象限,頂點A、B的坐標分別為(1,0),(4,0),CAB=90°,BC=5.拋物線y=+bx+c與邊AC,y軸的交點的縱坐標分別為3,

(1)求拋物線y=+bx+c對應的函數關系式;

(2)若將拋物線y=+bx+c經過平移后的拋物線的頂點是邊BC的中點,寫出平移過程;

(3)若拋物線y=+bx+c平移后得到的拋物線y=+k經過(﹣5,y1),(3,y2)兩點,當y1>y2k時,直接寫出h的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+4x軸于點A(﹣2,0)和B(BA右側),交y軸于點C,直線y=經過點B,交y軸于點D,且DOC中點.

(1)求拋物線的解析式;

(2)若P是第一象限拋物線上的一點,過P點作PHBDH,設P點的橫坐標是t,線段PH的長度是d,求dt的函數關系式;

(3)在(2)的條件下,當d=時,將射線PH繞著點P順時針方向旋轉45°交拋物線于點Q,求點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于的一元二次方程.

(1)試證明:無論取何值此方程總有兩個實數根;

(2)若原方程的兩根,滿足,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形的邊長為的中點,過點,交于點,連接并延長,交的延長線于點.則的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,,,點的中點,以點為圓心作圓心角為的扇形,點恰在弧上,則圖中陰影部分的面積為(

A. B. C. D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视