【題目】如圖,△ABC在直角坐標系中.
(1)若把△ABC向上平移2個單位,再向左平移1個單位得到△A1B1C1,畫出△A1B1C1,并寫出點A1,B1,C1的坐標;
(2)求△ABC的面積.
科目:初中數學 來源: 題型:
【題目】如圖,AB∥CD,點E,F分別在AB,CD上,連接EF,∠AEF,∠CFE的平分線交于點G,∠BEF,∠DFE的平分線交于點H.易證∠EHF=∠EGF=∠GEH=90°,從而可知四邊形EGFH是矩形.
小明繼續進行了探索,過G作MN∥EF,分別交AB,CD于點M,N,過H作PQ∥EF,分別交AB,CD于點P,Q,得到四邊形MNQP,此時,他猜想四邊形MNQP是菱形,請在下列框中補全他的證明思路.
由AB∥CD,MN∥EF,PQ∥EF,易證四邊形MNQP是平行四邊形.要證平行四邊形MNQP是菱形,只要證MN=NQ.由已知條件_____,MN∥EF,可得NG=NF,故只要證GM=FQ,即證△MGE≌△QFH.易證_____,_____,故只要證∠MGE=∠QFH,易證∠MGE=∠GEF,∠QFH=∠EFH,_____,即可得證.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某單位欲從內部招聘管理人員一名,對甲、乙、丙三名候選人進行了筆試和面試兩項測試,三人的測試成績如下表所示:
根據錄用程序,組織200名職工對三人利用投票推薦的方式進行民主評議,三人得票率(沒有棄權票,每位職工只能推薦1人)如扇形圖所示,每得一票記作1分.
(l)如果根據三項測試的平均成績確定錄用人選,那么誰將被錄用(精確到 0.01 )?
(2)根據實際需要,單位將筆試、面試、民主評議三項測試得分按5 : 2 : 3的比例確定個人成績,那么誰將被錄用?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24 m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設平行于墻的邊長為x m.
(1)設垂直于墻的一邊長為y m,直接寫出y與x之間的函數關系式;
(2)若菜園面積為384 m2,求x的值;
(3)求菜園的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小張去文具店購買作業本,作業本有大、小兩種規格,大本作業本的單價比小本作業本貴0.3元,已知用8元購買大本作業本的數量與用5元購買小本作業本的數量相同.
(1)求大本作業本與小本作業本每本各多少元?
(2)因作業需要,小張要再購買一些作業本,購買小本作業本的數量是大本作業本數量的2倍,總費用不超過15元.則大本作業本最多能購買多少本?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知直線AB:y=x+4交x軸于點A,交y軸于點B.直線CD:y=-
x-1與直線AB相交于點M,交x軸于點C,交y軸于點D.
(1)直接寫出點B和點D的坐標.
(2)若點P是射線MD的一個動點,設點P的橫坐標是x,△PBM的面積是S,求S與x之間的函數關系,并指出x的取值范圍.
(3)當S=10時,平面直角坐標系內是否存在點E,使以點B,E,P,M為頂點的四邊形是平行四邊形?若存在,共有幾個這樣的點?請求出其中一個點的坐標(寫出求解過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論正確的是( )
A. ac<0 B. ab>0 C. 4a+b=0 D. a﹣b+c>0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1:y=2x+1與直線l2:y=mx+4相交于點P(1,b).
(1)求b,m的值;
(2)垂直于x軸的直線與直線l1,l2,分別交于點C,D,垂足為點E,設點E的坐標為(a,0)若線段CD長為2,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數量充足,某同學去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是 ;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com