精英家教網 > 初中數學 > 題目詳情
(2013•黃埔區一模)如圖,Rt△ADE可由Rt△CAB旋轉而成,點B的對應點是E,點A的對應點是D,點B、C的坐標分別為(3,0),(1,4).
(1)寫出點E的坐標,并利用尺規作圖直接在圖中作出旋轉中心Q(保留作圖痕跡,不寫作法);
(2)求直線AE對應的函數關系式;
(3)將△ADE沿垂直于x軸的線段PT折疊,(點T在x軸上,點P在AE上,P與A、E不重合)如圖,使點A落在x軸上,點A的對應點為點F.設點T的坐標為(x,0),△PTF與△ADE重疊部分的面積為S.
①試求出S與x之間的函數關系式(包括自變量x的取值范圍);
②當x為何值時,S的面積最大?最大值是多少?
③是否存在這樣的點T,使得△PEF為直角三角形?若存在,直接寫出點T的坐標;若不存在,請說有理由.
分析:(1)根據旋轉前、后的圖形全等,可知△ABC≌△DEA,則AB=DE=2,AC=DA=4,由此求出點E的坐標;根據對應點到旋轉中心的距離相等可知旋轉中心Q既在線段AD的垂直平分線上,又在線段BE的垂直平分線上,為此,作出線段AD與線段BE的垂直平分線,它們的交點即為Q;
(2)設直線AE的函數關系式為y=kx+b,將A、E兩點的坐標代入,運用待定系數法即可求出;
(3)①分兩種情況:(i)當點F在AD之間時,1<x≤3,重疊部分是△PTF,由S△PTF=
1
2
TF•PT=
1
2
AT•PT,可求出S與x之間的函數關系式;(ii)當點F在點D的右邊時,3<x<5,重疊部分是梯形PTDH,由S梯形PTDH=
1
2
(PT+HD)•TD,可求出S與x之間的函數關系式;
②分兩種情況:(i)1<x≤3;(ii)3<x<5,由①中所求的S與x之間的二次函數關系式,根據二次函數的性質,結合自變量的取值范圍,即可求解;
③由于tan∠EAD=
1
2
,所以∠EAD≠45°,∠APT≠45°,∠APF≠90°,則∠EPF≠90°,當△PEF為直角三角形時,分兩種情況進行討論:(i)當△PFE以點E為直角頂點時,作EF⊥AE交x軸于F,由△AED∽△EFD,根據相似三角形對應邊的邊相等列出比例式,即可求解;(ii)當△P′F′E以點F′為直角頂點時,由△AED∽△EF′D,根據相似三角形對應邊的邊相等列出比例式,即可求解.
解答:解:(1)∵Rt△ADE可由Rt△CAB旋轉而成,點B的對應點是E,點A的對應點是D,
∴△ADE≌△CAB,
∴AD=CA=4,DE=AB=2,
∴OD=OA+AD=1+4=5,
∴E點坐標為(5,2).
連接BE,作出線段AD與線段BE的垂直平分線,它們的交點即為Q;                

(2)設直線AE對應的函數關系式為y=kx+b,
∵A(1,0),E(5,2),
k+b=0
5k+b=2
,解得
k=
1
2
b=-
1
2
,
∴直線AE對應的函數關系式為y=
1
2
x-
1
2
;

(3)①分兩種情況:
(i)當點F在AD之間時,重疊部分是△PTF,如圖.
∵點P在AE:y=
1
2
x-
1
2
上,PT⊥x軸,點T的坐標為(x,0),
∴PT=
1
2
x-
1
2

∵OT=x,OA=1,
∴AT=OT-OA=x-1,
∴TF=AT=x-1.
∵S△PTF=
1
2
TF•PT=
1
2
AT•PT=
1
2
(x-1)•(
1
2
x-
1
2
)=
1
4
(x-1)2,
∴S=
1
4
x2-
1
2
x+
1
4

∵當F與D重合時,AT=
1
2
AD=2,
∴1<x≤3;
(ii)當點F在點D的右邊時,重疊部分是梯形PTDH.
∵∠DFH=∠DAE,∠FDH=∠ADE=90°,
∴△FDH∽△ADE,
HD
DF
=
ED
AD
=
1
2
,
∴HD=
1
2
DF=
1
2
[2(x-1)-4]=x-3,
∴S梯形PTDH=
1
2
(PT+HD)•TD=
1
2
1
2
x-
1
2
+x-3)•(5-x)=-
3
4
x2+
11
2
x-
35
4
,
當T與D重合時,點F的坐標是(9,0),
∴3<x<5.
綜上所述,S=
1
4
x2-
1
2
x+
1
4
 (0<x≤3)
-
3
4
x2+
11
2
x-
35
4
 (3<x<5)
;

②(i)當1<x≤3時,∵S=
1
4
(x-1)2,
∴S隨x的增大而增大,
∴當x=3時,S有取大值,且最大值是S=
1
4
(3-1)2=1;
(ii)當3<x<5時,∵S=-
3
4
x2+
11
2
x-
35
4
=-
3
4
(x-
11
3
2+
4
3
,
∴當x=
11
3
時,S有最大值,且最大值是
4
3
;
綜上所述,當x=
11
3
時,S有最大值,且最大值是S=
4
3
;

③存在這樣的點T(
7
2
,0)和(
5
2
,0),能夠使得△PEF為直角三角形.
分兩種情況:
(i)當△PFE以點E為直角頂點時,如圖,作EF⊥AE交x軸于F.
∵△AED∽△EFD,
DF
ED
=
ED
AD
=
1
2
,
∴DF=
1
2
DE=1,
∴點F(6,0),
∴點T(
7
2
,0);
(ii)當△P′F′E以點F′為直角頂點時,如圖.
∵△AED∽△EF′D,
DF′
DE
=
DE
AD
=
1
2
,
∴DF′=
1
2
DE=1,
∴點F′(4,0),
∴點T(
5
2
,0).
綜上(i)、(ii)知,滿足條件的點T坐標為(
7
2
,0)和(
5
2
,0).
點評:本題考查了旋轉的性質,線段垂直平分線的畫法,運用待定系數法求一次函數的解析式,圖形面積的求法,二次函數的性質,直角三角形的性質,相似三角形的判定與性質,綜合性較強,有一定難度.運用數形結合及分類討論思想是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•黃埔區一模)下列計算正確的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•黃埔區一模)已知四組線段的長分別如下,以各組線段為邊,能組成三角形的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•黃埔區一模)已知點A(-1,0)和點B(1,2),將線段AB平移至A′B′,點A′與點A對應.若點A′的坐標為(1,-3),則點B′的坐標為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•黃埔區一模)某校為了了解九年級學生體育測試成績情況,以九年(1)班學生的體育測試成績為樣本,按A,B,C,D四個等級進行統計,并將統計結果繪制如圖兩幅統計圖,由圖中所給信息知,扇形統計圖中C等級所在的扇形圓心角的度數為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•黃埔區一模)平面內,下列命題為真命題是(  )

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视