【題目】如圖,△ABC的外角∠ACD的平分線CP與內角∠ABC的平分線BP交于點P,若∠BPC=40°,則∠CAP=( )
A. 40°B. 45°C. 50°D. 60°
【答案】C
【解析】
根據外角與內角性質得出∠BAC的度數,再利用角平分線的性質以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案.
解:延長BA,作PN⊥BD,PF⊥BA,PM⊥AC,
設∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=40°,
∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,
∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,
∴∠CAF=100°,
在Rt△PFA和Rt△PMA中,
,
∴Rt△PFA≌Rt△PMA(HL),
∴∠FAP=∠PAC=50°.
故選:C.
科目:初中數學 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內將△ABC經過一次平移后得到△A′B′C′,圖中標出了點B的對應點B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)畫出AB邊上的中線CD和BC邊上的高線AE;
(3)線段AA′與線段BB′的關系是: ;
(4)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象與反比例函數 的圖象交于A(﹣2,1),B(1,n)兩點.
(1)試確定上述反比例函數和一次函數的表達式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點O是正方形ABCD對角線BD的中點.
(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.
①∠AEM=∠FEM; ②點F是AB的中點;
(2)如圖2,若點E是OD上一點,點F是AB上一點,且使 =
=
,請判斷△EFC的形狀,并說明理由;
(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當 =
時,請猜想
的值(請直接寫出結論).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在6×6的正方形網格中,每個小正方形的邊長為1,點A、B、C、D、E、F、M、N、P均為格點(格點是指每個小正方形的頂點).
(1)利用圖①中的網格,過P點畫直線MN的平行線和垂線.
(2)把圖②網格中的三條線段AB、CD、EF通過平移使之首尾順次相接組成一個三角形(在圖②中畫出三角形).
(3)第(2)小題中線段AB、CD、EF首尾順次相接組成一個三角形的面積是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,將兩塊直角三角尺的直角頂點C疊放在一起,若∠DCE=35°,則∠ACB=_____;若∠ACB=140°,則∠DCE=_______;
(2)猜想∠ACB與∠DCE的大小有何特殊關系,并說明理由;
(3)如圖2,若是兩個同樣的直角三角尺60°銳角的頂點A重合在一起,則∠DAB與∠CAE的大小又有何關系,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com