精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知,點邊上,,邊相交于點

1)求證:;

2)如果,求證:

【答案】1)見解析;(2)見解析

【解析】

1)根據等邊對等角得到,通過證明△ABC∽△FDA得對應邊成比例,化比例式為等積式即可;

2)通過證明△AEF∽△CDF和△ABD∽△EDA,根據相似三角形的性質列兩個比例式,用等量代換即可得.

1)證明:∵AD=DC,

∴∠DAC=C,

∵∠ADE=B,

∴△ABC∽△FDA,

,

.

2)證明:∵AEBC,

∴∠E=EDC, EAC=C,

∴△AEF∽△CDF,

,

,

∵∠ADC=ADE+EDC=B+BAD, ADE=B,

∴∠BAD=EDC,

∴∠BAD=E,

∴△ABD∽△EDA,

,

,

.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,拋物線Wyax22的頂點為點A,與x軸的負半軸交于點D,直線AB交拋物線W于另一點C,點B的坐標為(1,0).

1)求直線AB的解析式;

2)過點CCEx軸,交x軸于點E,若AC平分∠DCE,求拋物線W的解析式;

3)若a,將拋物線W向下平移mm0)個單位得到拋物線W1,如圖2,記拋物線W1的頂點為A1,與x軸負半軸的交點為D1,與射線BC的交點為C1.問:在平移的過程中,tanD1C1B是否恒為定值?若是,請求出tanD1C1B的值;若不是,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,臺風中心位于點,并沿東北方向移動,已知臺風移動的速度為40千米/時,受影響區域的半徑為260千米,市位于點的北偏東75°方向上,距離480千米.

1)說明本次臺風是否會影響市;

2)若這次臺風會影響市,求市受臺風影響的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某品牌的洗衣機在市場上享有美譽,市場標價為元,進價為元,市場調研發現,若在市場價格的基礎上降價會引起銷售量的增加,當銷售價格為元時,月銷售量為臺;當銷售價格為元時,月銷售量為臺.若月銷售量(臺)與銷售價格(元)滿足一次函數關系.

1)求之間的函數關系式;

2)公司決定采取降價促銷,迅速占領市場的方案,請根據以上信息,判斷當銷售價格定為多少元時,公司的月利潤最大,并求出的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O

(1)畫出△AOB平移后的三角形,其平移后的方向為射線AD的方向,平移的距離為AD的長.

(2)觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知A42)、Bn,﹣4)是一次函數ykx+b圖象與反比例函數圖象的兩個交點.

1)求此反比例函數和一次函數的解析式;

2)直接寫出AOB的面積;

3)根據圖象直接寫出使一次函數的值小于反比例函數的值的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程ax2+bx+10中,b

1)若a4,求b的值;

2)若方程ax2+bx+10有兩個相等的實數根,求方程的根.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明大學畢業回家鄉創業第一期培植盆景與花卉各50盆售后統計,盆景的平均每盆利潤是160花卉的平均每盆利潤是19,調研發現:

①盆景每增加1盆景的平均每盆利潤減少2;每減少1,盆景的平均每盆利潤增加2;②花卉的平均每盆利潤始終不變.

小明計劃第二期培植盆景與花卉共100,設培植的盆景比第一期增加x,第二期盆景與花卉售完后的利潤分別為W1,W2(單位元)

(1)用含x的代數式分別表示W1,W2;

(2)當x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線與雙曲線交于A、B兩點,點B坐標為(-4,-2),C為雙曲線上一點,且在第一象限內,若AOC面積為6,則點C坐標為(

A. 4,2 B. 2,3 C. 3,4 D. 2,4

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视