精英家教網 > 初中數學 > 題目詳情

【題目】下面的圖象反映的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后又原路返回,順路到文具店去買筆,然后散步回家.其中x表示時間,y表示張強離家的距離.根據圖象回答:

1)體育場離張強家______ 千米,張強從家到體育場用了______ 分鐘;

2)體育場離文具店______ 千米;

3)張強在文具店逗留了______ 分鐘.

【答案】 2.5 15 1 20

【解析】(1),因為張強從家直接到體育長,故第一段函數圖象所對應的y軸的最高點即為體育場離張強家的距離;

(2)、(3),張強從體育場到文具店是減函數,此段函數圖象最低點y軸所對應的數值為張強家到文具店的距離,接下來一段平線是張強在文具店停留的時間;

(4),先求出張強家離文具店的距離,再求出從文具店到家的時間,求出二者的比值即可.

(1)從圖象上看,體育場離張強家2.5km,張強從家到體育場用了15分.

(2)體育場離文具店2.5-1.5=1(km).

(3)張強在文具店逗留了65-45=20(min).

(4)張強從文具店回家的平均速度為1.5÷(100-65)=370(km/min).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+cyx的部分對應值如下表:

x

-1

0

1

3

y

-3

1

3

1

下列結論:①拋物線的開口向下;②其圖象的對稱軸為x=1;③當x<1時,函數值yx的增大而增大;④方程ax2+bx+c=0有一個根大于4,其中正確的結論有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點M為直線AB上一動點, 都是等邊三角形,連接BN

求證: ;

分別寫出點M在如圖2和圖3所示位置時,線段AB、BMBN三者之間的數量關系不需證明;

如圖4,當時,證明:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)已知長方體的長、寬、高分別是3x4、2xx,則它的表面積是_____;

2)若3x3x1,則9x4+12x33x27x+2018_____;

3)若25x200080y2000,則的值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著私家車的增加,城市的交通也越老越擁擠,通常情況下,某段高架橋上車輛的行駛速度y(千米/時)與高架橋上每百米擁有車的數量x(輛)的關系如圖所示,當x≥10時,yx成反比例函數關系,當車行駛速度低于20千米/時,交通就會擁堵,為避免出現交通擁堵,高架橋上每百米擁有車的數量x應該滿足的范圍是

A. 0x≤40 B. x≥40 C. x>40 D. x<40

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某化工車間發生有害氣體泄漏,自泄漏開始到完全控制利用了40min,之后將對泄漏有害氣體進行清理,線段DE表示氣體泄漏時車間內危險檢測表顯示數據y與時間x(min)之間的函數關系(0≤x≤40),反比例函數y=對應曲線EF表示氣體泄漏控制之后車間危險檢測表顯示數據y與時間x(min)之間的函數關系(40≤x≤?).根據圖象解答下列問題:

(1)危險檢測表在氣體泄漏之初顯示的數據是   

(2)求反比例函數y=的表達式,并確定車間內危險檢測表恢復到氣體泄漏之初數據時對應x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】碼頭工人每天往一艘輪船上裝載貨物,平均每天裝載速度y(噸/元)與裝完貨物所需時間x(天)之間是反比例函數關系,其圖象如圖所示.

(1)求這個反比例函數的表達式;

(2)由于緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸貨多少噸?

(3)若碼頭原有工人10名,且每名工人每天的裝卸量相同,裝載完畢恰好用了8天時間,在(2)的條件下,至少需要增加多少名工人才能完成任務?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F,連接AF,BE相交于點P,且AE=CF.

(1)求證:AF=BE,并求∠FPB的度數;

(2)AE=2,試求AP·AF的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F是對角線BD上的點,∠1=∠2.

求證:(1)BE=DF;(2)AF∥CE.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视