【題目】已知二次函數y=mx2+(1﹣2m)x+1﹣3m.
(1)當m=2時,求二次函數圖象的頂點坐標;
(2)已知拋物線與x軸交于不同的點A、B.
①求m的取值范圍;
②若3≤m≤4時,求線段AB的最大值及此時二次函數的表達式.
【答案】(1)(,﹣
);(2)①m≠0且m≠
;②AB的最大值為15,y=4x2﹣7x﹣11
【解析】
(1)當m=2時,y=mx2+(1﹣2m)x+1﹣3m=x2﹣3x﹣5,即可求解;
(2)①△>0且m≠0,即可求解;②y=mx2+(1﹣2m)x+1﹣3m=(x﹣3m+1)(x+m),令y=0,則x=3m﹣1或﹣m,即可求解.
(1)當m=2時,y=mx2+(1﹣2m)x+1﹣3m=x2﹣3x﹣5,
函數的對稱軸為直線x=﹣,
當x=時,y=x2﹣3x﹣5=﹣
,
故頂點坐標為(,﹣
);
(2)①△=b2﹣4ac=(1﹣2m)2﹣4m(1﹣3m)=(4m﹣1)2>0,
故4m﹣1≠0,解得:m≠ ;
而y=mx2+(1﹣2m)x+1﹣3m為二次函數,故m≠0,
故m的取值范圍為:m≠0且m≠;
②y=mx2+(1﹣2m)x+1﹣3m=(x﹣3m+1)(x+m),
令y=0,則x=3m﹣1或﹣m,
則AB=|3m﹣1+m|=|4m﹣1|,
∵3≤m≤4,
∴12≤4m﹣1≤15,
故AB的最大值為15,
此時m=4,
當m=4時,y=mx2+(1﹣2m)x+1﹣3m=4x2﹣7x﹣11.
科目:初中數學 來源: 題型:
【題目】某校舉辦“迎亞運”學生書畫展覽,現要在長方形展廳中劃出3個形狀、大小完全一樣的小長方方形“圖中陰影部分”區域擺放作品.
(1)如圖1,若大長方形的長和寬分別為45米和30米,求小長方形的長和寬;
(2)如圖2,若大長方形的長和寬分別為和
.
①直接寫出1個小長方形周長與大長方形周長之比;
②若作品展覽區域(陰影部分)面積占展廳面積的,試求
的值,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,BE⊥AC于點E,AD⊥BC于點D,∠BAD=45°,CD=,AD與BE交于點F,連接CF,則AD的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一座現代化大型單塔雙面扇形斜拉橋,主橋采用獨塔雙面索斜拉設計,主橋樁呈“H”形,兩側用鋼絲繩斜拉固定.
問題提出:
如何測量主橋樁頂端至橋面的距離AD?
方案設計:
如圖,某數學課題研究小組通過調查研究和實地測量,在橋面B處測得∠ABC=26.57°,再沿BD方向走21米至C處,在C處測得∠ACD=30.96°.
問題解決:
根據上述方案和數據,求銀灘黃河大橋主橋樁頂端至橋面的距離AD.
(結果精確到1m,參考數據:sin26.57°≈0.447,cos26.57°≈0.894,tan26.57°≈0.500,sin30.96°≈0.514,cos30.96°≈0.858,tan30.96°≈0.600)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖,其中每個小正方形的邊長為1個單位長度.
(1)畫出△ABC關于原點O的中心對稱圖形△A1B1C1;
(2)畫出將△ABC繞點C順時針旋轉90°得到△A2B2C2.
(3)在(2)的條件下,求點A旋轉到點A2所經過的路線長(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】快慢兩車分別從相距千米的甲、乙兩地同時出發,勻速行駛,途中慢車因故障停留
小時,然后 以原速度的
倍繼續向甲地行駛,到達甲地后停止行駛;快車勻速到達乙地后,立即按原路原速返回甲 地(快車掉頭時間忽略不計),并且比慢車提前
分鐘到達甲地,快慢兩車之間的距離
(千米)與快 車行駛時間
(小時)之間的函數圖象如圖所示.則當兩車第二次相遇時,兩車距甲地還有________千米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】P是等邊△ABC內部一點,∠APB、∠BPC、∠CPA的大小之比是5:6:7,將△ABP逆時針旋轉,使得AB與AC重合,則以PA、PB、PC的長為邊的三角形的三個角∠PCQ:∠QPC:∠PQC=________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b(k≠0)的圖象與反比例函數y=(m≠0,x>0)的圖象在第一象限內交于點A,B,且該一次函數的圖象與y軸正半軸交于點C,過A,B分別作y軸的垂線,垂足分別為D,E.已知A(1,4),
=
.
(1)求m的值和一次函數的解析式;
(2)若點M為反比例函數圖象在A,B之間的動點,作射線OM交直線AB于點N,當MN長度最大時,直接寫出點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市將開展以“走進中國數學史”為主題的知識凳賽活動,紅樹林學校對本校100名參加選拔賽的同學的成績按A,B,C,D四個等級進行統計,繪制成如下不完整的統計表和扇形統計圖:
成績等級 | 頻數(人數) | 頻率 |
A | 4 | 0.04 |
B | m | 0.51 |
C | n | |
D | ||
合計 | 100 | 1 |
(1)求m= ,n= ;
(2)在扇形統計圖中,求“C等級”所對應心角的度數;
(3)成績等級為A的4名同學中有1名男生和3名女生,現從中隨機挑選2名同學代表學校參加全市比賽,請用樹狀圖法或者列表法求出恰好選中“1男1女”的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com