【題目】綜合題
(1)已知 是有理數且滿足:
是-27的立方根,
,求
的值;
(2)已知 ,求
的值.
【答案】
(1)解:∵a是-27的立方根,
∴a=-3,
∵ =7,
∴b=±7,
∴a2+2b=23或-5
(2)解:∵a-b=2,a-c= ,
∴b-c=- ,
∴b-c+ =0,
∴原式=(b-c+ )2=0
【解析】(1)根據立方根和算術平方根的定義求出a、b的值,再將a、b的值代入代數式計算即可得出答案。
(2)根據已知a-b、a-c的值消去a,求出b-c的值,再整體代入求值即可。
【考點精析】解答此題的關鍵在于理解算數平方根的相關知識,掌握正數a的正的平方根叫做a的算術平方根;正數和零的算術平方根都只有一個,零的算術平方根是零,以及對立方根的理解,了解如果一個數的立方等于a,那么這個數就叫做a 的立方根(或a 的三次方根);一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
科目:初中數學 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F.
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】理數學興趣小組在探究如何求tan15°的值,經過思考、討論、交流,得到以下思路:思路一 如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長CB至點D,使BD=BA,連接AD.設AC=1,則BD=BA=2,BC=.tanD=tan15°=
=
=
.
思路二 利用科普書上的和(差)角正切公式:tan(α±β)=.假設α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)=
=
=
.
思路三 在頂角為30°的等腰三角形中,作腰上的高也可以…
思路四 …
請解決下列問題(上述思路僅供參考).
(1)類比:求出tan75°的值;
(2)應用:如圖2,某電視塔建在一座小山上,山高BC為30米,在地平面上有一點A,測得A,C兩點間距離為60米,從A測得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;
(3)拓展:如圖3,直線與雙曲線
交于A,B兩點,與y軸交于點C,將直線AB繞點C旋轉45°后,是否仍與雙曲線相交?若能,求出交點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,△AOB為等腰直角三角形,A(4,4)
(1)求B點坐標;
(2)如圖2,若C為x軸正半軸上一動點,以AC為直角邊作等腰直角△ACD,∠ACD=90°連OD,求∠AOD的度數;
(3)如圖3,過點A作y軸的垂線交y軸于E,F為x軸負半軸上一點,G在EF的延長線上,以EG為直角邊作等腰Rt△EGH,過A作x軸垂線交EH于點M,連FM,等式AM=FM+OF是否成立?若成立,請證明:若不成立,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com