【題目】如圖,在平面直角坐標系xOy中,點點P第1次向上跳動1個單位至點
,緊接著第2次向左跳動2個單位至點
,第3次向上跳動1個單位至點
,第4次向右跳動3個單位至點
,第5次又向上跳動1個單位至點
,第6次向左跳動4個單位至點
,
照此規律,點P第100次跳動至點
的坐標是
A. B.
C.
D.
科目:初中數學 來源: 題型:
【題目】列一元一次方程解應用問題:
一個蓄水池裝有甲、乙兩個進水管和丙一個出水管,單獨開放甲管3小時可注滿一池水,單獨開放乙管6小時可注滿一池水,單獨開放丙管4小時可放盡一池水.
(1)若同時開放甲、乙、丙三個水管,幾小時可注滿水池?
(2)若甲管先開放1小時,而后同時開放乙、丙兩個水管,則共需幾小時可注滿水池?
(3)若甲管先開放1小時后關閉,而后同時開放乙、丙兩個水管,能注滿水池嗎?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數y=kx+b的圖象經過點(-1,-5),且與正比例函數y=x的圖象相交于點(2,a),求:
(1)a的值.
(2)k,b的值.
(3)這兩個函數圖象與x軸所圍成的三角形的面積。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】同學們,足球是世界上第一大運動,你熱愛足球運動嗎?已知在足球比賽中,勝一場得3分,平一場得1分,負一場得0分,一隊共踢了30場比賽,負了9場,共得47分,那么這個隊勝了( )
A. 10場 B. 11場 C. 12場 D. 13場
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,BE的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點A在數軸上對應的數為a,點B對應的數為b,且a、b滿足|a+3|+(b-2)2=0
(1)求線段AB的長;
(2)如圖1 點C在數軸上對應的數為x,且x是方程2x+1=x-5的根,在數軸上是否存在點P使PA+PB=
BC+AB?若存在,求出點P對應的數;若不存在,說明理由;
(3)如圖2,若P點是B點右側一點,PA的中點為M,N為PB的三等分點且靠近于P點,當P在B的右側運動時,有兩個結論:①PM-BN的值不變;②
PM+
BN的值不變,其中只有一個結論正確,請判斷正確的結論,并求出其值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發現 如圖2,固定△ABC,使△DEC繞點C旋轉,當點D恰好落在AB邊上時,填空:
② 線段DE與AC的位置關系是;
②設△BDC的面積為S1 , △AEC的面積為S2 , 則S1與S2的數量關系是 .
(2)猜想論證 當△DEC繞點C旋轉到如圖3所示的位置時,小明猜想(1)中S1與S2的數量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
(3)拓展探究 已知∠ABC=60°,點D是角平分線上一點,BD=CD=4,DE∥AB交BC于點E(如圖4).若在射線BA上存在點F,使S△DCF=S△BDE , 請直接寫出相應的BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC繞AB邊上的點D順時針旋轉90°得到△A′B′C′,A′C′交AB于點E.若AD=BE,則△A′DE的面積是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,動點P在∠ABC的平分線BD上,動點M在BC邊上,若BC=3,∠ABC=45°,則PM+PC的最小值是( )
A. 2 B. C.
D. 3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com