【題目】已知一次函數y=k1x+b與反比例函數y=的圖象交于第一象限內的P(
,8),Q(4,m)兩點,與x軸交于A點.
(1)分別求出這兩個函數的表達式;
(2)寫出點P關于原點的對稱點P'的坐標;
(3)求∠P'AO的正弦值.
【答案】(1) 反比例函數的表達式為y=,一次函數的表達式為y=﹣2x+9;(2) (-
,﹣8);(3)
.
【解析】
試題分析:(1)根據P(,8),可得反比例函數解析式,根據P(
,8),Q(4,1)兩點可得一次函數解析式;
(2)根據中心對稱的性質,可得點P關于原點的對稱點P'的坐標;
(3)過點P′作P′D⊥x軸,垂足為D,構造直角三角形,依據P'D以及AP'的長,即可得到∠P'AO的正弦值.
試題解析:(1)∵點P在反比例函數的圖象上,
∴把點P(,8)代入y=
可得:k2=4,
∴反比例函數的表達式為y=,
∴Q (4,1).
把P(,8),Q (4,1)分別代入y=k1x+b中,
得,
解得,
∴一次函數的表達式為y=﹣2x+9;
(2)點P關于原點的對稱點P'的坐標為(-,﹣8);
(3)過點P′作P′D⊥x軸,垂足為D.
∵P′(-,﹣8),
∴OD=,P′D=8,
∵點A在y=﹣2x+9的圖象上,
∴點A(,0),即OA=
,
∴DA=5,
∴P′A=,
∴sin∠P′AD=,
∴sin∠P′AO= .
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的兩條對角線AC,BD相交于點O,點E在BD上,且BE=CD,則∠BEC的度數為( )
A.22.5°
B.60°
C.67.5°
D.75°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國數學史上最先完成勾股定理證明的數學家是公元3世紀三國時期的趙爽,他為了證明勾股定理,創制了一副”弦圖“,后人稱其為“趙爽弦圖”(如圖1).圖2由弦圖變化得到,它是由八個全等的直角三角形拼接而成.將圖中正方形MNKT,正方形EFGH,正方形ABCD的面積分別記為S1 , S2 , S3 , 若S1+S2+S3=18,則正方形EFGH的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,正方形紙片ABCD的邊長為2,翻折∠B、∠D,使兩個直角的頂點重合于對角線BD上一點P,EF、GH分別是折痕(如圖2).設AE=x(0<x<2),給出下列判斷:
①當x=1時,點P是正方形ABCD的中心;
②當x= 時,EF+GH>AC;
③當0<x<2時,六邊形AEFCHG面積的最大值是 ;
④當0<x<2時,六邊形AEFCHG周長的值不變.
其中正確的是(寫出所有正確判斷的序號).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com