【題目】如圖,點C、D分別在扇形AOB的半徑OA、OB的延長線上,且OA=3,AC=3 ﹣3,CD∥AB,并與弧AB相交于點M、N.
(1)求線段OD的長;
(2)若sin∠C= ,求弦MN的長;
(3)在(2)的條件下,求優弧MEN的長度.
【答案】
(1)解:∵OA=OB∴∠OAB=∠OBA
∵CD∥AB∴∠OAB=∠C,∠D=∠OBA
∴∠C=∠D,
∴OD=OC=OA+AC=3 ;
(2)解:過O作OE⊥CD,連接OM,則ME= MN,
∵tan∠C= ,即
=
,
∴設OE=x,則CE=2x,
在Rt△OEC中,OC2=OE2+CE2,即(3 )2=x2+(2x)2,解得x=
在Rt△OME中,OM2=OE2+ME2,即32=( )2+ME2,解得ME=
,
∴由垂徑定理得MN=3;
(3)解:由(2)可得△OMN是等邊三角形,
∴∠MON=60°
∴優弧MEN的長度= =5π.
【解析】(1)根據CD∥AB,OA=OB,推出∠C=∠D,根據等腰三角形的判定證得OD=OC即可;(2)過O作OE⊥CD,連接OM,由垂徑定理可知ME= MN,再根據tan∠C=
可求出OE的長,利用勾股定理即可求出ME的長,進而求出答案;(3)由(2)可得△OMN是等邊三角形,即∠MON=60°,由弧長公式即可得到結論.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中.頂點為(﹣4,﹣1)的拋物線交y軸于點A(0,3),交x軸于B,C兩點.
(1)求此拋物線的解析式;
(2)已知點P是拋物線上位于B,C兩點之間的一個動點,問:當點P運動到什么位置時,四邊形ABPC的面積最大?并求出此時四邊形ABPC的面積.
(3)過點B作AB的垂線交拋物線于點D,是否存在以點C為圓心且與線段BD和拋物線的對稱軸l同時相切的圓?若存在,求出圓的半徑;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解
拋物線y=x2上任意一點到點(0,1)的距離與到直線y=﹣1的距離相等,你可以利用這一性質解決問題.
問題解決
如圖,在平面直角坐標系中,直線y=kx+1與y軸交于C點,與函數y=x2的圖象交于A,B兩點,分別過A,B兩點作直線y=﹣1的垂線,交于E,F兩點.
(1)寫出點C的坐標,并說明∠ECF=90°
(2)在△PEF中,M為EF中點,P為動點.
①求證:PE2+PF2=2(PM2+EM2);
②已知PE=PF=3,以EF為一條對角線作平行四邊形CEDF,若1<PD<2,試求CP的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(x>0)的圖象交矩形OABC的邊AB于點D,交邊BC于點E,且BE=2EC.若四邊形ODBE的面積為6,則k= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近年來,“在初中數學教學中使用計算器是否直接影響學生計算能力的發展”這一問題受到了廣泛關注,為此,某校隨機調查了若干名學生對此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調查結果繪制成如下不完整的統計表和統計圖:
學生對使用計算器影響計算能力發展的看法統計表
看法 | 沒有影響 | 影響不大 | 影響很大 |
學生人數 | 100 | 60 | m |
根據以上圖表信息,解答下列問題:
(1)統計表中的m= 。
(2)統計圖中表示“影響不大”的扇形的圓心角度數為 度;
(3)從這次接受調查的學生中隨機調查一人,恰好是持“影響很大”看法的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中是真命題的是( )
A.經過直線外一點,有且僅有一條直線與一線與已知直線垂直
B.平分弦的直徑垂直于弦
C.對角線互相平分且垂直的四邊形是菱形
D.反比例函數y= ,當k<0時,y隨x的增大而增大
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a>0)經過點M(﹣1,2)和點N(1,﹣2),交x軸于A,B兩點,交y軸于C,則:
①a+c=0;
②無論a取何值,此二次函數圖象與x軸必有兩個交點,函數圖象截x軸所得的線段長度必大于2;
③當函數在x< 時,y隨x的增大而減;
④當﹣1<m<n<0時,m+n< ;
⑤若a=1,則OAOB=OC2 .
以上說法正確的有( )
A.①②③④⑤
B.①②④⑤
C.②③④
D.①②③⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖邊長為1的正方形ABCD被兩條與邊平行的線段EF、GH分割為四個小矩形,EF與GH交于點P
(1)若AG=AE,證明:AF=AH;
(2)若矩形PFCH的面積,恰矩形AGPE面積的兩倍,試確定∠HAF的大小;
(3)若矩形EPHD的面積為 ,求Rt△GBF的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在銳角△ABC中,BC=10,高AD=8,矩形EFPQ的一邊QP在BC邊上,E、F兩點分別在AB、AC上,AD交EF于點H.
(1)求證: =
;
(2)設EF的長為x.
①當x為何值時,矩形EFPQ為正方形?
②當x為何值時,矩形EFPQ的面積最大?并求其最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com