【題目】在三角形紙片中,
,
,點
(不與
,
重合)是
上任意一點,將此三角形紙片按下列方式折疊,若
的長度為
,則
的周長為__________.(用含
的式子表示)
【答案】6
【解析】
根據折疊的性質可得∠EDF=∠B=30°,∠EFB=∠EFD=90°,∠ACD=∠GDC=90°,然后根據三角形外角的性質和平角的定義即可求出∠GED、∠GDE,即可證出△EGD為等邊三角形,從而得出EG=GD=ED,然后根據30°所對的直角邊是斜邊的一半即可求出ED,從而求出結論.
解:由折疊的性質可知:∠EDF=∠B=30°,∠EFB=∠EFD=90°,∠ACD=∠GDC=90°
∴∠GED=∠EDF+∠B=60°,∠GDE=180°-∠EDF-∠GDC=60°
∴∠EGD=180°-∠GED-∠GDE=60°
∴△EGD為等邊三角形
∴EG=GD=ED
在Rt△EDF中,∠EDF=30°
∴ED=2EF=2
∴EG=GD=ED=2
∴的周長為EG+GD+ED=6
故答案為:6.
科目:初中數學 來源: 題型:
【題目】某自動化車間計劃生產480個零件,當生產任務完成一半時,停止生產進行自動化程序軟件升級,用時20分鐘,恢復生產后工作效率比原來提高了,結果完成任務時比原計劃提前了40分鐘,求軟件升級后每小時生產多少個零件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數
圖像上的兩點,動點P(x,0)在x正半軸上運動,當線段AP與線段BP之差達到最大時,點P的坐標是( )
A. (,0) B. (1,0) C. (
,0) D. (
,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】施工隊要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米,現在O點為原點,OM所在直線為x軸建立直角坐標系(如圖所示).
(1)直接寫出點M及拋物線頂點P的坐標;
(2)求出這條拋物線的函數解析式;
(3)施工隊計劃在隧道門口搭建一個矩形“腳手架”ABCD,使A、D點在拋物線上,B、C點在地面OM上.為了籌備材料,需求出“腳手架”三根木桿AB、AD、DC的長度之和的最大值是多少?請你幫施工隊計算一下.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】利用“同角的余角相等”可以幫助我們得到相等的角,這個規律在全等三角形的判定中有著廣泛的運用.
(1)如圖①,,
,
三點共線,
于點
,
于點
,
,且
.若
,求
的長.
(2)如圖②,在平面直角坐標系中,為等腰直角三角形,直角頂點
的坐標為
,點
的坐標為
.求直線
與
軸的交點坐標.
(3)如圖③,,
平分
,若點
坐標為
,點
坐標為
.則
.(只需寫出結果,用含
,
的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E、F、 G、H分別為四邊形ABCD四邊之中點.
(1)求證:四邊形EFGH為平行四邊形;
(2)當AC、BD滿足______時,四邊形EFGH為矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“轉化”是數學中的一種重要思想,即把陌生的問題轉化成熟悉的問題,把復雜的問題轉化成簡單的問題,把抽象的問題轉化為具體的問題.
(1)請你根據已經學過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數;
(2)若對圖(1)中星形截去一個角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數;
(3)若再對圖(2)中的角進一步截去,你能由題(2)中所得的方法或規律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數嗎?只要寫出結論,不需要寫出解題過程)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com