精英家教網 > 初中數學 > 題目詳情

我市某商場有甲、乙兩種商品,甲種每件進價15元,售價20元;乙種每件進價35元,售價45元.
(1)若商家同時購進甲、乙兩種商品100件,設甲商品購進x件,售完此兩種商品總利潤為y 元.寫出y與x的函數關系式.
(2)該商家計劃最多投入3000元用于購進此兩種商品共100件,則至少要購進多少件甲種商品?若售完這些商品,商家可獲得的最大利潤是多少元?
(3)“五•一”期間,商家對甲、乙兩種商品進行表中的優惠活動,小王到該商場一次性付款324元購買此類商品,商家可獲得的最小利潤和最大利潤各是多少?

打折前一次性購物總金額
優惠措施
不超過400元
售價打九折
超過400元
售價打八折

解:(1)設甲商品購進x件,則乙商品購進(100﹣x)件,由題意,得
y=(20﹣15)x+(45﹣35)(100﹣x)=﹣5x+1000,
∴y與x之間的函數關系式為:y=﹣5x+1000。
(2)由題意,得15x+35(100﹣x)≤3000,
解得x≥25。
∵y=﹣5x+1000中k=﹣5<0,∴y隨x的增大而減小。
∴當x取最小值25時,y最大值,此時y=﹣5×25+1000=875(元)。
∴至少要購進25件甲種商品;若售完這些商品,商家可獲得的最大利潤是875元。
(3)設小王到該商場購買甲種商品m件,購買乙種商品n件.
①當打折前一次性購物總金額不超過400時,購物總金額為324÷0.9=360(元),
則20m+45n=360,m=18﹣n>0,∴0<n<8.
∵n是4的倍數,∴n=4,m=9。
此時的利潤為:324﹣(15×9+35×4)=49(元)。
②當打折前一次性購物總金額超過400時,購物總金額為324÷0.8=405(元),
則20m+45n=405,m=>0,∴0<n<9。
∵m、n均是正整數,∴m=9,n=5或m=18,n=1。
當m=9,n=5的利潤為:324﹣(9×15+5×35)=14(元);
當m=18,n=1的利潤為:324﹣(18×15+1×35)=19(元)。
綜上所述,商家可獲得的最小利潤是14元,最大利潤各是49元。

解析試題分析:(1)根據利潤=甲種商品的利潤+乙種商品的利潤就可以得出結論。
(2)根據“商家計劃最多投入3000元用于購進此兩種商品共100件”列出不等式,解不等式求出其解,再根據一次函數的性質,求出商家可獲得的最大利潤。
(3)設小王到該商場購買甲種商品m件,購買乙種商品n件.分兩種情況討論:①打折前一次性購物總金額不超過400;②打折前一次性購物總金額超過400。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

如圖,在等腰直角三角板ABC中,斜邊BC為2個單位長度,現把這塊三角板在平面直角坐標系xOy中滑動,并使B、C兩點始終分別位于y軸、x軸的正半軸上,直角頂點A與原點O位于BC兩側.

(1)取BC中點D,問OD+DA的長度是否發生改變,若會,說明理由;若不會,求出OD+DA長度;
(2)你認為OA的長度是否會發生變化?若變化,那么OA最長是多少?OA最長時四邊形OBAC是怎樣的四邊形?并說明理由;
(3)填空:當OA最長時A的坐標是(        ),直線OA的解析式是              

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,一次函數y=ax+b的圖象與反比例函數的圖象相交于點A(m,1)、B(﹣1,n),與x軸相交于點C(2,0),且AC=OC.

(1)求該反比例函數和一次函數的解析式;
(2)直接寫出不等式ax+b≥的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

(2013年四川攀枝花6分)如圖,直線y=k1x+b(k1≠0)與雙曲線(k2≠0)相交于A(1,2)、B(m,﹣1)兩點.

(1)求直線和雙曲線的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點,且x1<0<x2<x3,請直接寫出y1,y2,y3的大小關系式;
(3)觀察圖象,請直接寫出不等式k1x+b<的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

一項工程,甲隊單獨做需40天完成,若乙隊先做30天后,甲、乙兩隊一起合做20天恰好完成任務,請問:
(1)乙隊單獨做需要多少天才能完成任務?
(2)現將該工程分成兩部分,甲隊做其中一部分工程用了x天,乙隊做另一部分工程用了y天,若x; y都是正整數,且甲隊做的時間不到15天,乙隊做的時間不到70天,那么兩隊實際各做了多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

(2013年廣東梅州8分)為建設環境優美、文明和諧的新農村,某村村委會決定在村道兩旁種植A,B兩種樹木,需要購買這兩種樹苗1000棵.A,B兩種樹苗的相關信息如表:

 
單價(元/棵)
成活率
植樹費(元/棵)
A
20
90%
5
B
30
95%
5
設購買A種樹苗x棵,綠化村道的總費用為y元,解答下列問題:
(1)寫出y(元)與x(棵)之間的函數關系式;
(2)若這批樹苗種植后成活了925棵,則綠化村道的總費用需要多少元?
(3)若綠化村道的總費用不超過31000元,則最多可購買B種樹苗多少棵?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

甲乙兩車從A市去往B市,甲比乙早出發了2個小時,甲到達B市后停留一段時間返回,乙到達B市后立即返回.甲車往返的速度都為40千米/時,乙車往返的速度都為20千米/時,下圖是兩車距A市的路程S(千米)與行駛時間t(小時)之間的函數圖象.請結合圖象回答下列問題:

(1)A、B兩市的距離是   千米,甲到B市后,   小時乙到達B市;
(2)求甲車返回時的路程S(千米)與時間t(小時)之間的函數關系式,并寫出自變量t的取值范圍;
(3)請直接寫出甲車從B市往回返后再經過幾小時兩車相距15千米.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

水果店王阿姨到水果批發市場打算購進一種水果銷售,經過還價,實際價格每千克比原來少2元,發現原來買這種80千克的錢,現在可買88千克。
(1)現在實際這種每千克多少元?
(2)準備這種,若這種的量y(千克)與單價x(元/千克)滿足如圖所示的一次函數關系。

①求y與x之間的函數關系式;
②請你幫拿個主意,將這種的單價定為多少時,能獲得最大利潤?最大利潤是多少?(利潤=收入-進貨金額)

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

在矩形ABCD中,AB=2,BC=6,點E為對角線AC的中點,點P在邊BC上,連接PE、PA.當點P在BC上運動時,設BP=x,△APE的周長為y,下列圖象中,能表示y與x的函數關系的圖象大致是(   )

A. B.  C.  D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视