【題目】如圖,在平面直角坐標系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).
(1)在圖中作出△ABC關于y軸的對稱圖形△A1B1C1 .
(2)寫出點A1、B1、C1的坐標.
科目:初中數學 來源: 題型:
【題目】已知正比例函數y= x的圖象與一次函數y=kx﹣3的圖象相交于點(2,a).
(1)求a的值.
(2)求一次函數的表達式.
(3)在同一坐標系中,畫出這兩個函數的圖象.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】理數學興趣小組在探究如何求tan15°的值,經過思考、討論、交流,得到以下思路:思路一 如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長CB至點D,使BD=BA,連接AD.設AC=1,則BD=BA=2,BC=.tanD=tan15°=
=
=
.
思路二 利用科普書上的和(差)角正切公式:tan(α±β)=.假設α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)=
=
=
.
思路三 在頂角為30°的等腰三角形中,作腰上的高也可以…
思路四 …
請解決下列問題(上述思路僅供參考).
(1)類比:求出tan75°的值;
(2)應用:如圖2,某電視塔建在一座小山上,山高BC為30米,在地平面上有一點A,測得A,C兩點間距離為60米,從A測得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;
(3)拓展:如圖3,直線與雙曲線
交于A,B兩點,與y軸交于點C,將直線AB繞點C旋轉45°后,是否仍與雙曲線相交?若能,求出交點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時,①BC與CF的位置關系為: .
②BC,CD,CF之間的數量關系為: ;(將結論直接寫在橫線上)
(2)數學思考
如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.
(3)拓展延伸
如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=,CD=
BC,請求出GE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com