【題目】(1)如圖,已知,
,
平分
,
平分
,求
的度數.
(2)如果(1)中,,其他條件不變,求
的度數.
(3)如果(1)中,,
,其他條件不變,求
的度數.
科目:初中數學 來源: 題型:
【題目】如圖,一次函數 y=kx+b 的圖象與坐標軸分別交于 A、B 兩點,與反比例函數 y= 的圖象在第一象限的交點為點 C,CD⊥x 軸,垂足為點 D,若OB=3,OD=6,△AOB 的面積為 3.
(1)求一次函數與反比例函數的解析式;
(2)直接寫出當 x>0 時,kx+b﹣>0 的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,M,N分別是CD,BC的中點,且AM⊥CD,AN⊥BC。
(1)求證:∠BAD=2∠MAN;
(2)連接BD,若∠MAN=70°,∠DBC=40°,求∠ADC。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市銷售有甲、乙兩種商品,甲商品每件進價10元,售價15元;乙商品每件進價30元,售價40元。
(1)若該起市同時一次購進甲、兩種商品共80件,恰好用去1600元,求能購進甲乙兩種商品各多少件?
(2)該超市為使甲、乙兩種商品共80件的總利潤(利潤=售價-進價)不少于600元,但又不超過610元,請你幫助該超市設計相應的進貨方案。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=-與x軸交于A,B兩點,與y軸交于點C,其中點A的坐標為(-3,0).
(1)求b的值及點B的坐標;
(2)試判斷△ABC的形狀,并說明理由;
(3)一動點P從點A出發,以每秒2個單位的速度向點B運動,同時動點Q從點B出發,以每秒1個單位的速度向點C運動(當點P運動到點B時,點Q隨之停止運動),設運動時間為t秒,當t為何值時,△PBQ與△ABC相似?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某租賃公司擁有汽車100輛.據統計,每輛車的月租金為4000元時,可全部租出.每輛車的月租金每增加100元,未租出的車將增加1輛.租出的車每輛每月的維護費為500元,未租出的車每輛每月只需維護費100元.
(1)當每輛車的月租金為4600元時,能租出多少輛?并計算此時租賃公司的月收益(租金收入扣除維護費)是多少萬元?
(2)規定每輛車月租金不能超過7200元,當每輛車的月租金定為多少元時,租賃公司的月收益(租金收入扣除維護費)可達40.4萬元?
(3)當每輛車的月租金定為_________元時,租賃公司的月收益最大.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數
的圖象經過點
,直線
與x軸交于點
.
(1)求的值;
(2)過第二象限的點作平行于x軸的直線,交直線
于點C,交函數
的圖象于點D.
①當時,判斷線段PD與PC的數量關系,并說明理由;
②若,結合函數的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某條道路上通行車輛限速為60千米/時,在離道路50米處建有一個監測點P,道路AB段為檢測區(如圖).在△ABP中,已知∠PAB=32°,∠PBA=45°,那么車輛通過AB段的時間在多少秒以內時,可認定為超速?(精確到0.1秒.參考數據:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:直線AB與直線PQ交于點E,直線CD與直線PQ交于點F,∠PEB+∠QFD=180°.
(1)如圖1,求證:AB∥CD;
(2)如圖2,點G為直線PQ上一點,過點G作射線GH∥AB,在∠EFD內過點F作射線FM,∠FGH內過點G作射線GN,∠MFD=∠NGH,求證:FM∥GN;
(3)如圖3,在(2)的條件下,點R為射線FM上一點,點S為射線GN上一點,分別連接RG、RS、RE,射線RT平分∠ERS,∠SGR=∠SRG,TK∥RG,若∠KTR+∠ERF=108°,∠ERT=2∠TRF,∠BER=40°,求∠NGH的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com