【題目】已知,在平面直角坐標系中,點A(0,1),B(0,5),C(5,0),且點P在第一象限運動,且∠APB=45°,則PC的最小值為_____.
【答案】.
【解析】
作線段AB的垂直平分線MN交AB于點N,在MN上截取MN=2,以M為圓心,BM半徑作圓,點 , 由MN⊥AB,MN=AN=BN,可得∠AMB=90°,從而可證明點P在優弧
上,連接BM并延長交
于點P,必交
軸于點C,利用勾股定理可得
,
,答案即可解得.
作線段AB的垂直平分線MN交AB于點N,在MN上截取MN=2,以M為圓心,BM半徑作圓,點 ,
∵MN⊥AB,MN=AN=BN,
∴∠MAB=∠MBA=45°,
∴∠AMB=90°,
∴點P在優弧上,∠APB=45°,
連接BM并延長交于點P,必交
軸于點C,
∵BN=MN=2,
∴,
∴BP=,
∵OB=OC=5,
∴,
∴PC=BC-BP=-
=
.
科目:初中數學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,∠B=30°,弦BC=6,∠ACB的平分線交⊙O于D,連AD.
(1)求直徑AB的長.
(2)求陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG
(1)判斷CG與⊙O的位置關系,并說明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=2x+1與雙曲線相交于點A(m,)與x軸交于點 B.
(1)求雙曲線的函數表達式:
(2)點P在x軸上,如果△ABP的面積為6,求點P坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ABC是等邊三角形,點D、E分別在BC、AC上,且CE=BD,BE、AD相交于點F.求證:
(1)△ABD≌△BCE;
(2)△AEF∽△ABE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動,設點D,E運動的時間是ts(0<t≤15),過點D作DF⊥BC于點F,連接DE,EF,若四邊形AEFD為菱形,則t的值為( )
A.20B.15C.10D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3,BD為對角線.點P從點B出發,沿線段BA向點A運動,點Q從點D出發,沿線段DB向點B運動,兩點同時出發,速度都為每秒1個單位長度,當點P運動到A時,兩點都停止.設運動時間為t秒.
(1)是否存在某一時刻t,使得PQ∥AD?若存在,求出t的值;若不存在,說明理由.
(2)設四邊形BPQC的面積為S,求S與t之間的函數關系式.
(3)是否存在某一時刻t,使得S四邊形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,則說明理由.
(4)是否存在某一時刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,則說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了對甲,乙兩名同學進行學生會主席的競選考核、召開了一次競選答辯及民主測評會.由A,B,C,D,E五位教師評委對競選答辯進行評分,并選出20名學生代表參加民主投票.競選答辯的結果如下表所示:
評委 得分 選手 | A | B | C | D | E |
甲 | 92 | 88 | 90 | 94 | 96 |
乙 | 84 | 86 | 90 | 93 | 91 |
民主投票的結果為:甲8票,乙12票.
根據以上信息解答下列問題:
(1)甲,乙兩人的競選答辯得分分別是多少?
(2)如果綜合得分=競選答辯得分+民主投票得分,那么,甲,乙兩人誰當選學生會主席?
(3)如果綜合得分=競選答辯得分民主投票得分
,那么,當
時,甲,乙兩人誰當選學生會主席?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com