【題目】如圖,在Rt△ABC中,∠BAC=90°,BD是角平分線,以點D為圓心,DA為半徑的⊙D與AC相交于點E
(1)求證:BC是⊙D的切線;
(2)若AB=5,BC=13,求CE的長.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關系?請說明理由;
(3)設AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a,b,c為常數,且a≠0)中的x與y的部分對應值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
有下列結論:
①ac<0;
②當x>1時,y的值隨x值的增大而減;
③x=3是方程ax2+(b﹣1)x+c=0的一個根;
④當﹣1<x<3時,ax2+(b﹣1)x+c>0.
小明從中任意選取一個結論,則選中正確結論的概率為( )
A. 1B. C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,函數y1=ax+b(a、b為常數,且ab≠0)的圖象如圖所示,y2=bx+a,設y=y1·y2.
(1)當b=-2a時,
①若點(1,4)在函數y的圖象上,求函數y的表達式;
②若點(x1,p)和(x2,q)在函數y的圖象上,且,比較p,q的大小;
(2)若函數y的圖象與x軸交于(m,0)和(n,0)兩點,求證:m=.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經過O,A兩點,且頂點在BC邊上,對稱軸交BE于點F,點D,E的坐標分別為(3,0),(0,1).
(1)求拋物線的解析式;
(2)猜想△EDB的形狀并加以證明;
(3)點M在對稱軸右側的拋物線上,點N在x軸上,請問是否存在以點A,F,M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某景區的三個景點A、B、C在同一線路上.甲、乙兩名游客從景點A出發,甲步行到景點C;乙乘景區觀光車先到景點B,在B處停留一段時間后,再步行到景點C,甲、乙兩人同時到達景點C.甲、乙兩人距景點A的路程y(米)與甲出發的時間x(分)之間的函數圖象如圖所示.
(1)乙步行的速度為_ __米/分.
(2)求乙乘景區觀光車時y與x之間的函數關系式.
(3)甲出發多長時間與乙第一次相遇?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A(m,6),B(n,1)在反比例函數的圖象上,AD⊥x軸于點D,BC⊥x軸于點C,點E在CD上,CD=5,△ABE的面積為10,則點E的坐標是_____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F,連接AF,BE相交于點P,且AE=CF.
(1)求證:AF=BE,并求∠FPB的度數;
(2)若AE=2,試求AP·AF的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】盒中有若干枚黑棋和白棋,這些棋除顏色外無其他差別,現讓學生進行摸棋試驗:每次摸出一枚棋,記錄顏色后放回搖勻.重復進行這樣的試驗得到以下數據:
摸棋的次數n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次數m | 24 | 51 | 76 | 124 | 201 | 250 |
摸到黑棋的頻率 | 0.240 | 0.255 | 0.253 | 0.248 | 0.251 | 0.250 |
(1)根據表中數據估計從盒中摸出一枚棋是黑棋的概率是 ;(精確到0.01)
(2)若盒中黑棋與白棋共有4枚,某同學一次摸出兩枚棋,請計算這兩枚棋顏色不同的概率,并說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com