【題目】如圖所示,AB∥CD,AD∥BC,OE=OF,則圖中全等三角形的組數是( )
A.3組B.4組C.5組D.6組
【答案】D
【解析】
先根據題意AB∥CD,AD∥BC,可得多對角相等,再利用平行四邊形的性質可得線段相等,所以有△AFO≌△CEO,△AOD≌△COB,△FOD≌△EOB,△ACB≌△ACD,△ABD≌△DCB,△AOB≌△COD共6對.
∵AB∥CD,AD∥BC
∴∠ABD=∠CDB,∠ADB=∠CDB
又∵BD=DB
∴△ABD≌△CDB
∴AB=CD,AD=BC
∵OA=OC,OB=OD
∴△ABO≌△CDO,△BOC≌△DOA
∵OB=OD,∠CBD=∠ADB,∠BOF=∠DOE
∴△BFO≌△DEO
∴OE=OF
∵OA=OC,∠COF=∠AOE
∴△COF≌△AOE
∵AB=DC,BC=AD,AC=AC
∴△ABC≌△DCA,
共6組;
故選:D.
科目:初中數學 來源: 題型:
【題目】如圖,已知線段,
于點
,且
,
是射線
上一動點,
、
分別是
,
的中點,過點
,
,
的圓與
的另一交點
(點
在線段
上),連結
,
.
()當
時,則
的度數為__________.
()在點
的運動過程中,當
時,取四邊形
一邊的兩端點和線段
上一點
,若以這三點為頂點的三角形是直角三角形,當
時,則
的值為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知A(3,0),以OA為一邊在第一象限內畫正方形OABC,D(m,0)為x軸上的一個動點,以BD為一邊畫正方形BDEF(點F在直線AB右側).
(1)當m>3時(如圖1),試判斷線段AF與CD的數量關系,并說明理由.
(2)當AF=5時,求點E的坐標;
(3)當D點從A點向右移動4個單位,求這一過程中F點移動的路程是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是什么,并證明你的結論.
(2)當四邊形ABCD的對角線滿足什么條件時,四邊形EFGH是矩形;并利用你給的條件加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線
與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸
為
=–1,P為拋物線上第二象限的一個動點.
(1)求拋物線的解析式并寫出其頂點坐標;
(2)當點P的縱坐標為2時,求點P的橫坐標;
(3)當點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某省計劃5年內全部地級市通高鐵.某高鐵在泰州境內的建設即將展開,現有大量的沙石需要運輸.某車隊有載質量為8t、10t的卡車共12輛,全部車輛運輸一次能運輸100t沙石.
(1)求某車隊載質量為8t、10t的卡車各有多少輛;
(2)隨著工程的進展,某車隊需要一次運輸沙石165t以上,為了完成任務,準備新增購這兩種卡車共7輛,車隊有多少種購買方案?請你一一求出.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形ABCD是正方形,點P在直線BC上,點G在直線AD上(P,G不與正方形頂點重合,且在CD的同側),PD=PG,DF⊥PG于點H,交直線AB于點F,將線段PG繞點P逆時針旋轉90°得到線段PE,連結EF.
(1)如圖1,當點P與點G分別在線段BC與線段AD上時.
①請直接寫出線段DG與PC的數量關系(不要求證明);
②求證:四邊形PEFD是菱形;
(2)如圖2,當點P與點G分別在線段BC與線段AD的延長線上時,請猜想四邊形PEFD是怎樣的特殊四邊形,并證明你的猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司有A、B兩種型號的客車,它們的載客量、每天的租金如表所示:
A型號客車 | B型號客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
已知某中學計劃租用A、B兩種型號的客車共10輛,同時送七年級師生到沙家參加社會實踐活動,已知該中學租車的總費用不超過5600元.
(1)求最多能租用多少輛A型號客車?
(2)若七年級的師生共有380人,請寫出所有可能的租車方案.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com