【題目】如圖,△ABC內接于⊙O,AB為直徑,∠BAC=60°,延長BA至點P使AP=AC, 作CD平分∠ACB交AB于點E,交⊙O于點D. 連結PC,BD.
(1)求證:PC為⊙O的切線;
(2)求證:BD=PA;
(3)若PC=,求AE的長.
【答案】(1)證明見解析;(2)證明見解析;(3)
【解析】
(1)連接OC, PC是⊙O切線,只要證明OC⊥PC即可;
(2)連結AD,根據相等的圓周角所對的弦相等,得出AD=BD,進而利用勾股定理得出,再由△ACO為等邊三角形,得出結論;
(3)根據∠DBA=∠ACE=45°, ∠P=∠PCA=30°,得出PC=PE=,再利用勾股定理得出CO=6,PO=12,進而得出結論.
解:(1)連接OC,
,
∵∠BAC=60°,且OA=OC,
∴∠OCA=∠OAC=60°.
∵AP=AC,且∠P+∠PCA=∠BAC=60°,
∴∠P=∠PCA=30°.
∴∠PCO=∠PCA+∠ACO=90°.
∴PC為切線.
(2)連結AD.
∵CD平分∠ACB,且∠ACB=90°,
∴∠ACD=∠BCD=45°.
∴AD=BD.
∵在Rt△ADB中,.
∴
又∵OA=OC,∠CAO=60°,
∴△ACO為等邊三角形,
∴AC=CO=AO.
∴.
∴BD=PA ;
(3) ∵∠DBA=∠ACE=45°, ∠P=∠PCA=30°,
∴,
∴
∴PC=PE=.
又在Rt△PCO中,OP=OA+PA=2OC,,
∴CO=6,PO=12.
∴
∴
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,以CD為直徑的⊙O交BC于點E,過點E作EF⊥AB于點F.
(1)判斷EF所在直線與⊙O的位置關系,并說明理由.
(2)若∠B=40°,⊙O的半徑為6,求的長.(結果保留π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A.B.C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.
(1)求證:AP是⊙O的切線;
(2)求PD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE,將△ADE沿AE對折到△AFE,延長EF交邊BC于點G,連接AG,CF,下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S=
,其中正確的有( )個.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知不等臂蹺蹺板AB長為3米,蹺蹺板AB的支撐點O到地面上的點H的距高OH=0.6米。當蹺蹺板AB的一個端點A碰到地面時,AB與地面上的直線AH的夾角∠OAH的度數為30°.
(1)當AB的另一個端點B碰到地面時(如右圖),蹺蹺板AB與直線BH的夾角∠ABH的正弦值是多少?
(2)當AB的另一個端點B碰到地面時(如右圖),點A到直線BH的距離是多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象經過
,
兩點,與反比例函數
的圖象在第一象限內的交點為
.
求一次函數和反比例函數的表達式;
在x軸上是否存在點P,使
?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:由兩條與x軸有著相同的交點,并且開口方向相同的拋物線所圍成的封閉曲線稱為“月牙線”.如圖,拋物線C1與拋物線C2組成一個開口向上的“月牙線”,拋物線C1與拋物線C2與x軸有相同的交點M,N(點M在點N的左側),與y軸的交點分別為A,B且點A的坐標為(0,﹣3),拋物線C2的解析式為y=mx2+4mx﹣12m,(m>0).
(1)請你根據“月牙線”的定義,設計一個開口向下.“月牙線”,直接寫出兩條拋物線的解析式;
(2)求M,N兩點的坐標;
(3)在第三象限內的拋物線C1上是否存在一點P,使得△PAM的面積最大?若存在,求出△PAM的面積的最大值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知為
的直徑,
、
是
的弦,
是
的切線,切點為
,
,
、
的延長線相交于點
.
(1)求證:是
的切線;
(2)若,
,求
的半徑.
(3)在(2)中的條件下,,將
以點
為中心逆時針旋轉
,求
掃過的圖形的面積(結果用
表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,B是的半徑OA上的一點(不與端點重合),過點B作OA的垂線交
于點C,D,連接OD,E是
上一點,
,過點C作
的切線l,連接OE并延長交直線l于點F.
(1)①依題意補全圖形.
②求證:∠OFC=∠ODC.
(2)連接FB,若B是OA的中點,的半徑是4,求FB的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com