精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,△ABC中,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B,C分別在AD,AF上,此時BD=CF,BD⊥CF成立.

(1)當△ABC繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;

(2)當△ABC繞點A逆時針旋轉45°時,如圖3,延長DB交AF,CF于點N,H.
①求證:BD⊥CF;
②當AB=2,AD=3 時,求線段AN的長.

【答案】
(1)解:BD=CF.

理由如下:如圖2中,由題意得,∠CAF=∠BAD=θ,

在△CAF和△BAD中,

,

∴△CAF≌△BAD,

∴BD=CF


(2)解:①由(1)得△CAF≌△BAD,

∴∠CFA=∠BDA,

∵∠FNH=∠DNA,∠DNA+∠NDA=90°,

∴∠CFA+∠FNH=90°,

∴∠FHN=90°,即BD⊥CF;

②如圖3中,作BM⊥AD于M,

在Rt△AMB中,∵∠BAM=45°,AB=2,

∴AM=BM= ,DM=3 =2 ,

BM∥AN,

= ,

=

∴AN=


【解析】(1)根據旋轉變換的性質易證明△CAF≌△BAD,即可求證結論。
(2)①根據全等三角形的性質、△CAF≌△BAD,得出∠CFA=∠BDA,再證明∠FHN=90°,根據垂直的定義證明即可;
②作BM⊥AD于M,在Rt△AMB中,由∠BAM=45°,AB=2,推出AM=BM,求得DM、BM的長。再根據平行線分線段成比例得出比例式,建立方程即可求得AN的值。
【考點精析】通過靈活運用垂線的性質和平行線分線段成比例,掌握垂線的性質:1、過一點有且只有一條直線與己知直線垂直.2、垂線段最短;三條平行線截兩條直線,所得的對應線段成比例即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系xoy中,已知A(6,0),B(8,6),將線段OA平移至CB,點D在x軸正半軸上(不與點A重合),連接OC,AB,CD,BD.

(1)寫出點C的坐標;

(2)當△ODC的面積是△ABD的面積的3倍時,求點D的坐標;

(3)設∠OCD=α,∠DBA=β,∠BDC=θ,判斷α、β、θ之間的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知DCFP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG

(1)說明:DCAB;

(2)求∠PFH的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題
(1)計算:(﹣ 2﹣| ﹣1|+(﹣ +1)0+3tan30°
(2)解方程: + =4.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:用2A型車和1B型車裝滿貨物一次可運貨10t;用1A型車和2B型車裝滿貨物一次可運貨11t.某物流公司現有35t貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都裝滿貨物.根據以上信息,解答下列問題:

(1)1A型車和1B型車都裝滿貨物一次可分別運貨多少噸?

(2)請你幫該物流公司設計租車方案;

(3)A型車每輛需租金100元/次,B型車每輛需租金120元/次.請選出最省錢的租車方案,并求出最少租車費.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知y是x的反比例函數,且x=8時,y=12.
(1)寫出y與x之間的函數關系式;
(2)如果自變量x的取值范圍是2≤x≤3,求y的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)如果兩個三角形兩邊和其中一邊所對的角相等,則兩個三角形全等,這是一個假命題,請畫圖舉例說明;

2)如圖,在ABCDEF中,ABEDBCDF,∠BAC=∠DEF120°,求證:ABC≌△EDF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題
(1)先化簡,再求值: ÷(1+ ),其中x=2017.
(2)已知方程x2﹣2x+m﹣3=0有兩個相等的實數根,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場第一次用11000元購進某款拼裝機器人進行銷售,很快銷售一空,商家又用24000元第二次購進同款機器人,所購進數量是第一次的2倍,但單價貴了10元.

(1)求該商家第一次購進機器人多少個?

(2)若所有機器人都按相同的標價銷售,要求全部銷售完畢的利潤率不低于20%(不考慮其它因素),那么每個機器人的標價至少是多少元?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视