精英家教網 > 初中數學 > 題目詳情

已知:如圖,在半徑為4的⊙O中,AB為直徑,以弦(非直徑)為對稱軸將折疊后與相交于點,如果,那么的長為

A.          B.         C.        D.

 

【答案】

A.

【解析】

試題分析:如圖,AC為折疊線,把折疊線看作對稱軸,折疊后得到的弧AC所在的⊙P與⊙O關于AC對稱,如圖,連接DF,CF,BC,根據直徑所對的圓周角是直角,可知:點B、C、F三點共線,即△ABF是等腰三角形,且AC⊥BF,FD⊥AB,由AO=4,AD=3DB可得:AD=6,BD=2,AB=8,由軸對稱可知:AF=8,所以,;根據可以求出,故選A.

考點:1、軸對稱的性質;2、圓周角定理;3、勾股定理.

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:如圖,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點,CM的延長線交⊙O精英家教網于點E,且EM>MC.連接DE,DE=
15

(1)求證:AM•MB=EM•MC;
(2)求EM的長;
(3)求sin∠EOB的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,在半徑為4的⊙O中,圓心角∠AOB=90°,以半徑OA、OB的中點C、F為頂點作矩形CDEF,頂點D、E在⊙O的劣弧
AB
上,OM⊥DE于點M.試求圖中陰影部分的面積.(結果保留π)

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,在半徑為2的半圓O中,半徑OA垂直于直徑BC,點E與點F分別在弦AB、AC精英家教網上滑動并保持AE=CF,但點F不與A、C重合,點E不與A、B重合.
(1)求四邊形AEOF的面積.
(2)設AE=x,S△OEF=y,寫出y與x之間的函數關系式,求x取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,在半徑為4的⊙O中,AB,CD是兩條直徑,M為OB的中點,CM的延長線交⊙O于點E,且EM>MC.連接DE,DE=
15

(1)求證:AM•MB=EM•MC;
(2)求sin∠EOB的值;
(3)若P是直徑AB延長線上的點,且BP=12,求證:直線PE是⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,在半徑為8的⊙O中,AB,CD是兩條直徑,M為OB的中點,CM的延長線交⊙O于點E,且EM>MC.連接DE,DE=2
15

(1)求證:
AM
EM
=
MC
MB

(2)求EM的長;
(3)求sin∠EOB的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视